Reproduction for 2302.04077 which aims to minimize the sum of a
Elastic Obstacle Problem(EOP) describes the shape of an elastic membrane covering an obstacle
problem $$ \min_x\ \frac12\Vert Ax-b\Vert_2^2+\lambda\Vert x\Vert_1\tag{5} $$ proximal mapping $$ \begin{aligned} x_{k+1}&=\mathop{\arg\min}_u\ \frac 1 2\Vert u-x_k\Vert_2^2+\lambda\Vert u\Vert_1\ &=\operatorname{sign}(x_k)\odot\max(|x_k|-\lambda,0) \end{aligned}\tag{6} $$