最近看到一个非常有意思的项目Candle,使用Rust做机器学习开发。
AI的成本来自哪里?数据、算法还是资源?现如今,AI的开发还处于上升期,这个时候,最需要的是数据的快速获取,以及算法快速落地,所以Python成为了机器学习的首选语言。但是随着AI应用的不断完善,占成本最高的是算力资源和电力资源,这个时候Python的劣势就暴露出来了,Python的解释性语言导致了性能的不足,以及资源的浪费。所以,一门性能更好,更加适合模型推理服务,更“省电”的语言——Rust将会是后AI时代的首选。 “下一个短缺的将是电力。” —— Elon Musk
Candle is a minimalist ML framework for Rust with a focus on performance (including GPU support) and ease of use. Candle是一个专注于性能(包括GPU支持)和易用性的Rust的最小化ML框架,由Hugging Face公司开发。Candle 使我们能够使用一个类似 torch 的 API 在 Rust 中构建健壮且轻量级的模型推理服务。基于 Candle 的推理服务将容易扩展,快速引导,并且以极快的速度处理请求,这使它更适合应对规模和韧性挑战的云原生无服务器环境。
使用Candle来做一个经典的mnist手写数字识别。
[package]
name = "candle-test"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
candle-nn = "0.4.1"
candle-core = "0.4.1"
candle-datasets = "0.4.1"
anyhow = "1.0.75"
flate2 = "1.0.28"
rand = "0.8.5"
[features]
cuda = ["candle-core/cuda", "candle-nn/cuda"]
这个数据集是一个非常经典的数据集,用于训练模型,这里我们使用Candle提供的数据集。 训练集图片:60000*28*28 训练集标签:60000*1 测试集图片:10000*28*28 测试集标签:10000*1
加载数据集:
let dataset_dir = "datasets/mnist";
decompress_dataset(dataset_dir);
let dataset = candle_datasets::vision::mnist::load_dir(dataset_dir)?;
println!("train-images: {:?}", dataset.train_images.shape());
println!("train-labels: {:?}", dataset.train_labels.shape());
println!("test-images: {:?}", dataset.test_images.shape());
println!("test-labels: {:?}", dataset.test_labels.shape());
/* Output:
train-images: [60000, 784]
train-labels: [60000]
test-images: [10000, 784]
test-labels: [10000]
*/
定义一个简单的CNN模型,由两个卷积层和;两个全连接层,一个Dropout层组成。
pub trait Model : Sized {
fn forward(&self, input: &Tensor, config: &Config)
-> Result<Tensor, Error>;
// TODO: Make this accept a config
fn new(vars: VarBuilder, labels: usize) -> Result<Self, Error>;
}
pub struct CNN {
conv1: candle_nn::Conv2d,
conv2: candle_nn::Conv2d,
fc1: candle_nn::Linear,
fc2: candle_nn::Linear,
dropout: candle_nn::Dropout,
}
impl Model for CNN {
fn new(vs: VarBuilder, labels: usize) -> Result<Self, Error> {
let conv1 = candle_nn::conv2d(1, 4, 5, Default::default(), vs.pp("c1"))?;
let conv2 = candle_nn::conv2d(4, 8, 5, Default::default(), vs.pp("c2"))?;
let fc1 = candle_nn::linear(128, 64, vs.pp("fc1"))?;
let fc2 = candle_nn::linear(64, labels, vs.pp("fc2"))?;
let dropout = candle_nn::Dropout::new(0.5);
Ok(Self {
conv1,
conv2,
fc1,
fc2,
dropout,
})
}
fn forward(&self, xs: &Tensor, config: &Config)
-> Result<Tensor, Error> {
// Get the batch and image dimensions from the tensor
let (b_sz, _img_dim) = xs.dims2()?;
let mut varmap = VarMap::new();
if let Some(load) = &config.load {
println!("loading weights from {load}");
varmap.load(load)?
}
let xs = xs
.reshape((b_sz, 1, 28, 28))?
.apply(&self.conv1)?
.max_pool2d(2)?
.apply(&self.conv2)?
.max_pool2d(2)?
.flatten_from(1)?
.apply(&self.fc1)?
.relu()?;
let x = self.dropout.forward_t(&xs, config.train)?.apply(&self.fc2)?;
if let Some(save) = &config.save {
println!("saving trained weights in {save}");
varmap.save(save)?
}
Ok(x)
}
}
有一说一,跟PyTorch相比,还挺像那么回事的。
pub struct Config {
lr: f64, // 学习率
load: Option<String>, // 加载模型
save: Option<String>, // 保存模型
epochs: usize, // epoch
train: bool, // 是否训练
batch_size: usize, // batch_size
}
impl Config {
pub fn new(lr: f64, load: Option<String>, save: Option<String>,
epochs: usize, train: bool, batch_size: usize) -> Self {
Config {
lr: lr,
load: load,
save: save,
epochs: epochs,
train: train,
batch_size: batch_size,
}
}
pub fn get_lr(&self) -> f64 {
self.lr
}
pub fn get_num_epochs(&self) -> usize {
self.epochs
}
pub fn get_batch_size(&self) -> usize {
self.batch_size
}
}
let config = Config::new(
0.05, // 学习率
None, // 加载模型
None, // 保存模型
10, // epoch
true, // 是否训练
1024, // batch_size
);
这些参数设置的还是比较简单的。没有装CUDA,比较慢。
fn train(dataset: Dataset, config: Config, device: Device) -> anyhow::Result<()> {
let bsize: usize = config.get_batch_size();
let train_images = dataset.train_images.to_device(&device)?;
let train_labels = dataset
.train_labels
.to_dtype(DType::U32)?
.to_device(&device)?;
let test_images = dataset.test_images.to_device(&device)?;
let test_labels = dataset
.test_labels
.to_dtype(DType::U32)?
.to_device(&device)?;
let varmap = VarMap::new();
let vs = VarBuilder::from_varmap(&varmap, DType::F32, &device);
let model = CNN::new(vs.clone(), 10)?;
let mut sgd = candle_nn::optim::SGD::new(varmap.all_vars(), config.get_lr())?;
let n_batches = train_images.dim(0)? / bsize;
let mut batch_idxs = (0..n_batches).collect::<Vec<usize>>();
for epoch in 0..config.get_num_epochs() {
batch_idxs.shuffle(&mut thread_rng()); // 打乱顺序
let mut sum_loss = 0f32;
for batch_idx in batch_idxs.iter() {
let train_images = train_images.narrow(0, batch_idx * bsize, bsize)?;
let train_labels = train_labels.narrow(0, batch_idx * bsize, bsize)?;
let logits = model.forward(&train_images, &config)?;
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
let loss = loss::nll(&log_sm, &train_labels)?;
sgd.backward_step(&loss)?;
sum_loss += loss.to_vec0::<f32>()?;
}
let avg_loss = sum_loss / n_batches as f32;
let test_logits = model.forward(&test_images, &config)?;
let sum_ok = test_logits
.argmax(D::Minus1)?
.eq(&test_labels)?
.to_dtype(DType::F32)?
.sum_all()?
.to_scalar::<f32>()?;
let test_accuracy = sum_ok / test_labels.dims1()? as f32;
println!(
"{epoch:4} train loss {:8.5} test acc: {:5.2}%",
avg_loss,
100. * test_accuracy
);
}
Ok(())
}
/*
0 train loss 1.96967 test acc: 47.35%
1 train loss 1.37902 test acc: 57.75%
2 train loss 1.19515 test acc: 63.13%
3 train loss 1.09978 test acc: 64.90%
4 train loss 1.04852 test acc: 67.16%
5 train loss 1.02437 test acc: 67.40%
6 train loss 0.98418 test acc: 70.13%
7 train loss 0.94210 test acc: 71.01%
8 train loss 0.88540 test acc: 70.75%
9 train loss 0.96413 test acc: 74.40%
*/
老样子,加载训练数据,加载测试数据,加载模型,定义优化器,开始训练,测试。
总体使用下来,感觉还行,可以看出Hugging Face公司已经在尽力向PyTorch靠拢了,整体的使用体验还是不错的。 不过怎么感觉同样是CPU训练,好像性能没有提升多少,没有具体测试,感兴趣的同学可以自己测试一下。