Skip to content

lycantropos/rithm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

rithm

In what follows python is an alias for python3.8 or pypy3.8 or any later version (python3.9, pypy3.9 and so on).

Installation

Install the latest pip & setuptools packages versions

python -m pip install --upgrade pip setuptools

User

Download and install the latest stable version from PyPI repository

python -m pip install --upgrade rithm

Developer

Download the latest version from GitHub repository

git clone https://github.com/lycantropos/rithm.git
cd rithm

Install dependencies

python -m pip install -r requirements.txt

Install

python setup.py install

Usage

Python

Arbitrary precision integer

With setup

>>> from rithm.integer import Int

we can:

  • construct
    >>> Int()
    Int(0)
    >>> Int(9)
    Int(9)
    >>> Int('9')
    Int(9)
    >>> Int('0b1001', 2)
    Int(9)
    >>> Int('0o11', 8)
    Int(9)
    >>> Int('0x9', 16)
    Int(9)
    >>> Int('1001', 2)
    Int(9)
    >>> Int('0o11', 8)
    Int(9)
    >>> Int('9', 16)
    Int(9)
    >>> Int(9.99)
    Int(9)
  • compare
    >>> Int(9) == Int(9)
    True
    >>> Int(9) >= Int(9)
    True
    >>> Int(9) > Int(8)
    True
    >>> Int(9) <= Int(9)
    True
    >>> Int(9) < Int(10)
    True
  • calculate
    >>> abs(Int(-9))
    Int(9)
    >>> Int(4) + Int(5)
    Int(9)
    >>> Int(9) & Int(11)
    Int(9)
    >>> Int(19) // Int(2)
    Int(9)
    >>> ~Int(-10)
    Int(9)
    >>> Int(19) % Int(10)
    Int(9)
    >>> Int(3) * Int(3)
    Int(9)
    >>> -Int(-9)
    Int(9)
    >>> Int(1) | Int(8)
    Int(9)
    >>> Int(3) ** Int(2)
    Int(9)
    >>> Int(5) << Int(1)
    Int(10)
    >>> Int(5) >> Int(1)
    Int(2)
    >>> Int(25) - Int(16)
    Int(9)
    >>> Int(18) / Int(2)
    Fraction(Int(9), Int(1))
    >>> Int(2) ^ Int(11)
    Int(9)

Exact fraction

With setup

>>> from rithm.fraction import Fraction

we can:

  • construct
    >>> Fraction()
    Fraction(Int(0), Int(1))
    >>> Fraction(1)
    Fraction(Int(1), Int(1))
    >>> Fraction(1, 2)
    Fraction(Int(1), Int(2))
    >>> Fraction(50, 100)
    Fraction(Int(1), Int(2))
    >>> Fraction(0.5)
    Fraction(Int(1), Int(2))
  • compare
    >>> Fraction(1, 2) == Fraction(1, 2)
    True
    >>> Fraction(1, 2) >= Fraction(1, 2)
    True
    >>> Fraction(1, 2) > Fraction(1, 3)
    True
    >>> Fraction(1, 2) < Fraction(2, 3)
    True
    >>> Fraction(1, 2) != Fraction(1, 3)
    True
  • calculate
    >>> abs(Fraction(-1, 2))
    Fraction(Int(1), Int(2))
    >>> Fraction(1, 3) + Fraction(1, 6)
    Fraction(Int(1), Int(2))
    >>> Fraction(3, 2) // Fraction(1)
    Int(1)
    >>> Fraction(3, 2) % Fraction(1)
    Fraction(Int(1), Int(2))
    >>> Fraction(1, 3) * Fraction(3, 2)
    Fraction(Int(1), Int(2))
    >>> -Fraction(-1, 2)
    Fraction(Int(1), Int(2))
    >>> Fraction(1, 2) ** 2
    Fraction(Int(1), Int(4))
    >>> Fraction(3, 2) - Fraction(1)
    Fraction(Int(1), Int(2))
    >>> Fraction(1, 3) / Fraction(2, 3)
    Fraction(Int(1), Int(2))

Rust

Arbitrary precision integer

/// With setup
use std::convert::TryFrom;
use traiter::numbers::{
    Abs, DivEuclid, FromStrRadix, Pow, RemEuclid, Zero
};
use rithm::big_int;

#[cfg(target_arch = "x86")]
type Digit = u16;
#[cfg(not(target_arch = "x86"))]
type Digit = u32;
const DIGIT_BITNESS: usize = (Digit::BITS - 1) as usize;
const _: () = assert!(big_int::is_valid_digit_bitness::<Digit, DIGIT_BITNESS>());
type BigInt = big_int::BigInt<Digit, DIGIT_BITNESS>;
/// we can:
/// - construct
assert_eq!(BigInt::zero(), 0);
assert_eq!(BigInt::from(9), 9);
assert_eq!(BigInt::try_from("9").unwrap(), 9);
assert_eq!(BigInt::try_from("0b1001").unwrap(), 9);
assert_eq!(BigInt::try_from("0o11").unwrap(), 9);
assert_eq!(BigInt::try_from("0x9").unwrap(), 9);
assert_eq!(BigInt::from_str_radix("1001", 2).unwrap(), 9);
assert_eq!(BigInt::from_str_radix("11", 8).unwrap(), 9);
assert_eq!(BigInt::from_str_radix("9", 16).unwrap(), 9);
assert_eq!(BigInt::try_from(9.99).unwrap(), 9);
/// - compare
assert!(BigInt::from(9) == BigInt::from(9));
assert!(BigInt::from(9) >= BigInt::from(9));
assert!(BigInt::from(9) > BigInt::from(8));
assert!(BigInt::from(9) <= BigInt::from(9));
assert!(BigInt::from(9) < BigInt::from(10));
/// - calculate
assert_eq!(BigInt::from(-9).abs(), 9);
assert_eq!(BigInt::from(4) + BigInt::from(5), 9);
assert_eq!(BigInt::from(9) & BigInt::from(11), 9);
assert_eq!(BigInt::from(1) | BigInt::from(8), 9);
assert_eq!(BigInt::from(2) ^ BigInt::from(11), 9);
assert_eq!(BigInt::from(19) / BigInt::from(2), 9);
assert_eq!(BigInt::from(19).div_euclid(BigInt::from(2)), 9);
assert_eq!(BigInt::from(3) * BigInt::from(3), 9);
assert_eq!(-BigInt::from(-9), 9);
assert_eq!(!BigInt::from(-10), 9);
assert_eq!(BigInt::from(3).pow(BigInt::from(2)), 9);
assert_eq!(BigInt::from(19) % BigInt::from(10), 9);
assert_eq!(BigInt::from(19).rem_euclid(BigInt::from(10)), 9);
assert_eq!(BigInt::from(5) << 1, 10);
assert_eq!(BigInt::from(5) >> 1, 2);
assert_eq!(BigInt::from(25) - BigInt::from(16), 9);

Exact fraction

/// With setup
use std::convert::TryFrom;
use traiter::numbers::{Abs, DivEuclid, One, Pow, RemEuclid, Zero};
use rithm::fraction;

type Fraction = fraction::Fraction<i8>;
/// we can:
/// - construct
assert_eq!(Fraction::zero(), 0);
assert_eq!(Fraction::one(), 1);
assert_eq!(Fraction::new(1, 2), Some(Fraction::from(1) / 2));
assert_eq!(Fraction::new(50, 100), Fraction::new(1, 2));
assert_eq!(Fraction::try_from(0.5).unwrap(), Fraction::new(1, 2).unwrap());
/// - compare
assert!(Fraction::new(1, 2).unwrap() == Fraction::new(1, 2).unwrap());
assert!(Fraction::new(1, 2).unwrap() >= Fraction::new(1, 2).unwrap());
assert!(Fraction::new(1, 2).unwrap() > Fraction::new(1, 3).unwrap());
assert!(Fraction::new(1, 2).unwrap() <= Fraction::new(1, 2).unwrap());
assert!(Fraction::new(1, 2).unwrap() < Fraction::new(2, 3).unwrap());
assert!(Fraction::new(1, 2).unwrap() != Fraction::new(1, 3).unwrap());
/// - calculate
assert_eq!(Fraction::new(-1, 2).unwrap().abs(), Fraction::new(1, 2).unwrap());
assert_eq!(Fraction::new(1, 3).unwrap() + Fraction::new(1, 6).unwrap(),
           Fraction::new(1, 2).unwrap());
assert_eq!(Fraction::new(1, 3).unwrap() / Fraction::new(2, 3).unwrap(),
           Fraction::new(1, 2).unwrap());
assert_eq!(Fraction::new(3, 2).unwrap().div_euclid(Fraction::from(1)), 1);
assert_eq!(Fraction::new(1, 3).unwrap() * Fraction::new(3, 2).unwrap(),
           Fraction::new(1, 2).unwrap());
assert_eq!(-Fraction::new(-1, 2).unwrap(), Fraction::new(1, 2).unwrap());
assert_eq!(Fraction::new(1, 2).unwrap().pow(2), Fraction::new(1, 4).unwrap());
assert_eq!(Fraction::new(3, 2).unwrap() % Fraction::from(1),
           Fraction::new(1, 2).unwrap());
assert_eq!(Fraction::new(3, 2).unwrap().rem_euclid(Fraction::from(1)),
           Fraction::new(1, 2).unwrap());
assert_eq!(Fraction::new(3, 2).unwrap() - Fraction::from(1),
           Fraction::new(1, 2).unwrap());

Development

Bumping version

Preparation

Install bump2version.

Pre-release

Choose which version number category to bump following semver specification.

Test bumping version

bump2version --dry-run --verbose $CATEGORY

where $CATEGORY is the target version number category name, possible values are patch/minor/major.

Bump version

bump2version --verbose $CATEGORY

This will set version to major.minor.patch-alpha.

Release

Test bumping version

bump2version --dry-run --verbose release

Bump version

bump2version --verbose release

This will set version to major.minor.patch.

Running tests

Install dependencies

python -m pip install -r requirements-tests.txt

Plain

pytest

Inside Docker container:

  • with CPython
    docker-compose --file docker-compose.cpython.yml up
  • with PyPy
    docker-compose --file docker-compose.pypy.yml up

Bash script:

  • with CPython

    ./run-tests.sh

    or

    ./run-tests.sh cpython
  • with PyPy

    ./run-tests.sh pypy

PowerShell script:

  • with CPython
    .\run-tests.ps1
    or
    .\run-tests.ps1 cpython
  • with PyPy
    .\run-tests.ps1 pypy

About

Arbitrary precision arithmetic

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages