python class to create self-similarity matrices (SSMs) from audio
Clone and install:
git clone https://github.com/lyramakesmusic/ssm.git
cd ssm
pip install -e .
# Basic usage:
from ssm import SSM
ssm = SSM()
image = ssm.create_img("/path/to/audio/file")
image.save('generated_ssm.png')
# Pass audio directly:
import librosa
sr, audio = librosa.load('path/to/audio/file.wav', sr=None)
image = ssm.create_img(audio)
image.save('generated_ssm.png')
# Change params....
# Directly in the function call:
image = ssm.create_img(audio, n_chroma=36, hop_length_multiplier=2.0, bins_per_octave_multiplier=5.0)
image.save('generated_ssm.png')
# In the constructor:
ssm = SSM(hop_length_factor=1.0, n_chroma=24, bins_per_octave_multiplier=2.0, hop_length_multiplier=1.0, color_map='inferno', threshold=0.5)
image = ssm.create_img(audio)
image.save('generated_ssm.png')
# As a JSON object:
params = {
'hop_length_factor': 1.0,
'n_chroma': 24,
'bins_per_octave_multiplier': 2.0,
'hop_length_multiplier': 1.0,
'color_map': 'inferno',
'threshold': 0.5
}
image = ssm.create_img(audio, **params)
image.save('generated_ssm.png')
# Get the SSM data directly (not as an image):
S = ssm.compute_ssm(audio, **params)
print(S, S.shape)
# NOTE: compute_ssm does not accept the 'color_map' param
Colormaps can be found here: https://matplotlib.org/stable/users/explain/colors/colormaps.html