Skip to content
This repository has been archived by the owner on Aug 8, 2023. It is now read-only.

Commit

Permalink
[core] A more accurate algorithm for approximating round line joins
Browse files Browse the repository at this point in the history
  • Loading branch information
alexshalamov committed Aug 4, 2019
1 parent 92a8c18 commit 8ada461
Showing 1 changed file with 25 additions and 17 deletions.
42 changes: 25 additions & 17 deletions src/mbgl/renderer/buckets/line_bucket.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,9 @@ void LineBucket::addFeature(const GeometryTileFeature& feature,
const float COS_HALF_SHARP_CORNER = std::cos(75.0 / 2.0 * (M_PI / 180.0));
const float SHARP_CORNER_OFFSET = 15.0f;

// Angle per triangle for approximating round line joins.
const float DEG_PER_TRIANGLE = 30.0f;

// The number of bits that is used to store the line distance in the buffer.
const int LINE_DISTANCE_BUFFER_BITS = 14;

Expand Down Expand Up @@ -226,13 +229,18 @@ void LineBucket::addGeometry(const GeometryCoordinates& coordinates, const Geome
*
*/

// Calculate the length of the miter (the ratio of the miter to the width).
// Find the cosine of the angle between the next and join normals
// using dot product. The inverse of that is the miter length.
// Calculate cosines of the angle (and its half) using dot product.
const double cosAngle = prevNormal->x * nextNormal->x + prevNormal->y * nextNormal->y;
const double cosHalfAngle = joinNormal.x * nextNormal->x + joinNormal.y * nextNormal->y;

// Calculate the length of the miter (the ratio of the miter to the width)
// as the inverse of cosine of the angle between next and join normals.
const double miterLength =
cosHalfAngle != 0 ? 1 / cosHalfAngle : std::numeric_limits<double>::infinity();

// Approximate angle from cosine.
const double approxAngle = 2 * std::sqrt(2 - 2 * cosHalfAngle);

const bool isSharpCorner = cosHalfAngle < COS_HALF_SHARP_CORNER && prevCoordinate && nextCoordinate;

if (isSharpCorner && i > first) {
Expand Down Expand Up @@ -331,20 +339,20 @@ void LineBucket::addGeometry(const GeometryCoordinates& coordinates, const Geome
// Create a round join by adding multiple pie slices. The join isn't actually round, but
// it looks like it is at the sizes we render lines at.

// Add more triangles for sharper angles.
// This math is just a good enough approximation. It isn't "correct".
const int n = std::floor((0.5 - (cosHalfAngle - 0.5)) * 8);

for (int m = 0; m < n; m++) {
auto approxFractionalJoinNormal = util::unit(*nextNormal * ((m + 1.0) / (n + 1.0)) + *prevNormal);
addPieSliceVertex(*currentCoordinate, distance, approxFractionalJoinNormal, lineTurnsLeft, startVertex, triangleStore, lineDistances);
}

addPieSliceVertex(*currentCoordinate, distance, joinNormal, lineTurnsLeft, startVertex, triangleStore, lineDistances);

for (int k = n - 1; k >= 0; k--) {
auto approxFractionalJoinNormal = util::unit(*prevNormal * ((k + 1.0) / (n + 1.0)) + *nextNormal);
addPieSliceVertex(*currentCoordinate, distance, approxFractionalJoinNormal, lineTurnsLeft, startVertex, triangleStore, lineDistances);
// Pick the number of triangles for approximating round join by based on the angle between normals.
const unsigned n = ::round((approxAngle * 180 / M_PI) / DEG_PER_TRIANGLE);

for (unsigned m = 1; m < n; ++m) {
double t = double(m) / n;
if (t != 0.5) {
// approximate spherical interpolation https://observablehq.com/@mourner/approximating-geometric-slerp
const double t2 = t - 0.5;
const double A = 1.0904 + cosAngle * (-3.2452 + cosAngle * (3.55645 - cosAngle * 1.43519));
const double B = 0.848013 + cosAngle * (-1.06021 + cosAngle * 0.215638);
t = t + t * t2 * (t - 1) * (A * t2 * t2 + B);
}
auto approxFractionalNormal = util::unit(*prevNormal * (1.0 - t) + *nextNormal * t);
addPieSliceVertex(*currentCoordinate, distance, approxFractionalNormal, lineTurnsLeft, startVertex, triangleStore, lineDistances);
}
}

Expand Down

0 comments on commit 8ada461

Please sign in to comment.