Skip to content

maxfreu/SegmentationModels.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SegmentationModels

Stable Dev Build Status

The aim of this package is to provide functionality similar to https://github.com/qubvel/segmentation_models.pytorch. Pull requests are very welcome.

Supported Architectures

  • UNet

Supported Backbones

  • VGG
  • ResNet
  • ResNeXt
  • MobileNetv1-3

A subset of the classifiers in Metalhead.jl is supported. Pre-training is supported as far as it's supported there.

Supported Features

  • Using pretrained models
  • Setting the number of output classes
  • Changing the number of input layers, e.g. to ingest multispectral images
  • Setting the final activation

Usage

using Flux
using SegmentationModels

data = rand(Float32, 256, 256, 8, 1) |> gpu
unet = UNet(8,1; init_channels=16, stages=4) |> gpu  # returns unet with simple double-conv backbone as a placeholder

# or
unet = UNet(ResNet50(;pretrain=true); num_classes=1337, input_channels=4) |> gpu

unet(data)

ToDo

  • Add other segmentation architectures
  • Flesh out docs
  • Flesh out tests

About

Segmentation models for Flux.jl

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages