Python implementation of gVAMP for summary statistics.
module load python3
sloc={Path to sgVAMP/src folder}
python3 ${sloc}/main.py [Input options]
Option | Description |
---|---|
--ld-files |
Path to LD matrices files, separated by comma |
--r-files |
Path to XTy files separated by comma |
--true-signal-file |
Path to true signal file |
--out-dir |
Output directory |
--out-name |
Output file name |
--N |
Number of samples |
--M |
Number of markers |
--K |
Number of cohorts |
--L |
Number of prior mixture components (Including spike) |
--iterations |
Number of iterations |
--prior-vars |
Prior mixture variances of different cohorts, separated by comma (e.g. 0,1 ). First must be 0. |
--prior-probs |
Prior mixture probabilites of different cohorts, separated by comma (e.g. 0.99,0.01 ). Must sum up to 1. |
--gamw |
Initial noise precision |
--gam1 |
Initial signal precision |
--lmmse-damp |
Use LMMSE damping |
--learn-gamw |
Learn or fix gamw |
--rho |
Damping factor rho |
--cg-maxit |
CG max iterations |
--s |
Rused = (1-s) * R + s * Id |
--mle-prior-update |
Updating prior probabilities using MLE ('mle') or EM ('em') |
--em-prior-maxit |
Maximal number of iterations that prior-learning EM is allowed to perform |
Signal estimates over iterations are stored in binary files: {out_dir}/{out_name}__xhat_it_{it}.bin
Separate CSV output files are created for each cohort: {out_dir}/{out_name}_cohort_{id}.csv
Iteration | gamw | gam1 | gam2 | alpha1 | alpha2 |
---|---|---|---|---|---|
... |