Skip to content

medical-genomics-group/sgVAMP-py

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

sgVAMP-py

Python implementation of gVAMP for summary statistics.

Example

module load python3

sloc={Path to sgVAMP/src folder}

python3 ${sloc}/main.py [Input options]

Input options

Option Description
--ld-files Path to LD matrices files, separated by comma
--r-files Path to XTy files separated by comma
--true-signal-file Path to true signal file
--out-dir Output directory
--out-name Output file name
--N Number of samples
--M Number of markers
--K Number of cohorts
--L Number of prior mixture components (Including spike)
--iterations Number of iterations
--prior-vars Prior mixture variances of different cohorts, separated by comma (e.g. 0,1). First must be 0.
--prior-probs Prior mixture probabilites of different cohorts, separated by comma (e.g. 0.99,0.01). Must sum up to 1.
--gamw Initial noise precision
--gam1 Initial signal precision
--lmmse-damp Use LMMSE damping
--learn-gamw Learn or fix gamw
--rho Damping factor rho
--cg-maxit CG max iterations
--s Rused = (1-s) * R + s * Id
--mle-prior-update Updating prior probabilities using MLE ('mle') or EM ('em')
--em-prior-maxit Maximal number of iterations that prior-learning EM is allowed to perform

Output files

Signal estimates over iterations are stored in binary files: {out_dir}/{out_name}__xhat_it_{it}.bin

Separate CSV output files are created for each cohort: {out_dir}/{out_name}_cohort_{id}.csv

CSV file structure:

Iteration gamw gam1 gam2 alpha1 alpha2
...

About

Python implementation of gVAMP for summary statistics.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages