-
Notifications
You must be signed in to change notification settings - Fork 4.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[XPU] XPU accelerator support for Intel GPU device (#4547)
This PR includes XPU support for Intel GPU. With this PR, DeepSpeed can support XPU devices without install Intel Extension for DeepSpeed. --------- Co-authored-by: Liangliang-Ma <1906710196@qq.com> Co-authored-by: baodi <di.bao@intel.com> Co-authored-by: Logan Adams <114770087+loadams@users.noreply.github.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: Yizhou Wang <yizhou.wang@intel.com> Co-authored-by: Michael Wyatt <michaelwyatt@microsoft.com>
- Loading branch information
1 parent
c8c57b8
commit f4f3131
Showing
22 changed files
with
2,322 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,282 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
# DeepSpeed Team | ||
|
||
import torch | ||
from deepspeed.accelerator.abstract_accelerator import DeepSpeedAccelerator | ||
import intel_extension_for_pytorch as ipex # noqa: F401 # type: ignore | ||
import oneccl_bindings_for_pytorch # noqa: F401 # type: ignore | ||
|
||
|
||
class XPU_Accelerator(DeepSpeedAccelerator): | ||
|
||
def __init__(self): | ||
self._name = 'xpu' | ||
self._communication_backend_name = 'ccl' | ||
self.aligned_tensors = [] | ||
|
||
def is_synchronized_device(self): | ||
return False | ||
|
||
# Device APIs | ||
def device_name(self, device_index=None): | ||
if device_index == None: | ||
return 'xpu' | ||
return 'xpu:{}'.format(device_index) | ||
|
||
def device(self, device_index=None): | ||
return torch.xpu.device(device_index) | ||
|
||
def set_device(self, device_index): | ||
torch.xpu.set_device(device_index) | ||
|
||
def current_device(self): | ||
return torch.xpu.current_device() | ||
|
||
def current_device_name(self): | ||
return 'xpu:{}'.format(torch.xpu.current_device()) | ||
|
||
def device_count(self): | ||
return torch.xpu.device_count() | ||
|
||
def synchronize(self, device_index=None): | ||
return torch.xpu.synchronize(device_index) | ||
|
||
# RNG APIs | ||
def random(self): | ||
return torch.xpu.random | ||
|
||
def set_rng_state(self, new_state, device_index=None): | ||
if device_index == None: | ||
return torch.xpu.set_rng_state(new_state) | ||
return torch.xpu.set_rng_state(new_state, device_index) | ||
|
||
def get_rng_state(self, device_index=None): | ||
if device_index == None: | ||
return torch.xpu.get_rng_state() | ||
return torch.xpu.get_rng_state(device_index) | ||
|
||
def manual_seed(self, seed): | ||
return torch.xpu.manual_seed(seed) | ||
|
||
def manual_seed_all(self, seed): | ||
return torch.xpu.manual_seed_all(seed) | ||
|
||
def initial_seed(self, seed): | ||
return torch.xpu.initial_seed(seed) | ||
|
||
def default_generator(self, device_index): | ||
return torch.xpu.default_generators[device_index] | ||
|
||
# Streams/Events | ||
@property | ||
def Stream(self): | ||
return torch.xpu.Stream | ||
|
||
def stream(self, stream): | ||
return torch.xpu.stream(stream) | ||
|
||
def current_stream(self, device_index=None): | ||
return torch.xpu.current_stream(device_index) | ||
|
||
def default_stream(self, device_index=None): | ||
# torch.xpu does not support the sync behavior of default stream as cuda | ||
# use current_stream as workaround | ||
# see https://pytorch.org/docs/stable/notes/cuda.html#cuda-streams | ||
return torch.xpu.current_stream(device_index) | ||
|
||
@property | ||
def Event(self): | ||
return torch.xpu.Event | ||
|
||
# Memory management | ||
def empty_cache(self): | ||
return torch.xpu.empty_cache() | ||
|
||
def memory_allocated(self, device_index=None): | ||
return torch.xpu.memory_allocated(device_index) | ||
|
||
def max_memory_allocated(self, device_index=None): | ||
return torch.xpu.max_memory_allocated(device_index) | ||
|
||
def reset_max_memory_allocated(self, device_index=None): | ||
return torch.xpu.reset_max_memory_allocated(device_index) | ||
|
||
def memory_cached(self, device_index=None): | ||
return torch.xpu.memory_reserved(device_index) | ||
|
||
def max_memory_cached(self, device_index=None): | ||
return torch.xpu.max_memory_reserved(device_index) | ||
|
||
def reset_max_memory_cached(self, device_index=None): | ||
return torch.xpu.reset_max_memory_reserved(device_index) | ||
|
||
def memory_stats(self, device_index=None): | ||
return torch.xpu.memory_stats(device_index) | ||
|
||
def reset_peak_memory_stats(self, device_index=None): | ||
return torch.xpu.reset_peak_memory_stats(device_index) | ||
|
||
def memory_reserved(self, device_index=None): | ||
return torch.xpu.memory_reserved(device_index) | ||
|
||
def max_memory_reserved(self, device_index=None): | ||
return torch.xpu.max_memory_reserved(device_index) | ||
|
||
def total_memory(self, device_index=None): | ||
return torch.xpu.get_device_properties(device_index).total_memory | ||
|
||
def available_memory(self, device_index=None): | ||
return self.total_memory(device_index) - self.memory_allocated(device_index) | ||
|
||
# Misc | ||
def amp(self): | ||
return torch.xpu.amp | ||
|
||
def is_available(self): | ||
return torch.xpu.is_available() | ||
|
||
def range_push(self, msg): | ||
# TODO itt is currently not supported yet | ||
# return torch.profiler.itt.range_push(msg) | ||
return | ||
|
||
def range_pop(self): | ||
# TODO itt is currently not supported yet | ||
# return torch.profiler.itt.range_pop() | ||
return | ||
|
||
def lazy_call(self, callback): | ||
return torch.xpu.lazy_init._lazy_call(callback) | ||
|
||
def communication_backend_name(self): | ||
return self._communication_backend_name | ||
|
||
def is_triton_supported(self): | ||
return False | ||
|
||
# Graph operations | ||
def create_graph(self): | ||
return None | ||
|
||
def capture_to_graph(self, graph, pool=None, stream=None): | ||
from deepspeed.runtime.utils import noop_context | ||
return noop_context() | ||
|
||
def replay_graph(self, graph): | ||
return | ||
|
||
# Data types | ||
def is_bf16_supported(self): | ||
return True | ||
|
||
def is_fp16_supported(self): | ||
return True | ||
|
||
def supported_dtypes(self): | ||
return [torch.float, torch.half, torch.bfloat16] | ||
|
||
# Tensor operations | ||
|
||
@property | ||
def BFloat16Tensor(self): | ||
return torch.xpu.BFloat16Tensor | ||
|
||
@property | ||
def ByteTensor(self): | ||
return torch.xpu.ByteTensor | ||
|
||
@property | ||
def DoubleTensor(self): | ||
return torch.xpu.DoubleTensor | ||
|
||
@property | ||
def FloatTensor(self): | ||
return torch.xpu.FloatTensor | ||
|
||
@property | ||
def HalfTensor(self): | ||
return torch.xpu.HalfTensor | ||
|
||
@property | ||
def IntTensor(self): | ||
return torch.xpu.IntTensor | ||
|
||
@property | ||
def LongTensor(self): | ||
return torch.xpu.LongTensor | ||
|
||
def pin_memory(self, tensor, align_bytes=1): | ||
if align_bytes == 1: | ||
return tensor.pin_memory(device=self.current_device_name()) | ||
elif align_bytes == 0: | ||
from intel_extension_for_deepspeed.op_builder.async_io import AsyncIOBuilder | ||
self.aio_handle = AsyncIOBuilder().load().aio_handle(128 * 1024, 8, False, False, False) | ||
aligned_t = self.aio_handle.new_cpu_locked_tensor(tensor.numel(), tensor) | ||
aligned_t = aligned_t[:tensor.numel()].copy_(tensor) | ||
self.aligned_tensors.append([aligned_t.data_ptr(), aligned_t[-1].data_ptr()]) | ||
return aligned_t | ||
|
||
def is_pinned(self, tensor): | ||
if tensor.is_pinned(device=self.current_device_name()): | ||
return True | ||
else: | ||
for begin, end in self.aligned_tensors: | ||
if begin <= tensor.data_ptr() and tensor.data_ptr() <= end: | ||
return True | ||
return False | ||
|
||
def op_builder_dir(self): | ||
try: | ||
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed | ||
# if successful this also means we're doing a local install and not JIT compile path | ||
from op_builder import __deepspeed__ # noqa: F401 # type: ignore | ||
return "op_builder.xpu" | ||
except ImportError: | ||
return "deepspeed.ops.op_builder.xpu" | ||
|
||
def on_accelerator(self, tensor): | ||
device_str = str(tensor.device) | ||
if device_str.startswith('xpu:'): | ||
return True | ||
else: | ||
return False | ||
|
||
# create an instance of op builder and return, name specified by class_name | ||
def create_op_builder(self, op_name): | ||
builder_class = self.get_op_builder(op_name) | ||
if builder_class != None: | ||
return builder_class() | ||
return None | ||
|
||
# return an op builder class, name specified by class_name | ||
def get_op_builder(self, class_name): | ||
try: | ||
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed | ||
# if successful this also means we're doing a local install and not JIT compile path | ||
from op_builder import __deepspeed__ # noqa: F401 # type: ignore | ||
from op_builder.xpu import CPUAdagradBuilder, CPUAdamBuilder, FusedAdamBuilder, AsyncIOBuilder | ||
except ImportError: | ||
from deepspeed.ops.op_builder.xpu import CPUAdagradBuilder, CPUAdamBuilder, FusedAdamBuilder, AsyncIOBuilder | ||
|
||
if class_name == "AsyncIOBuilder": | ||
return AsyncIOBuilder | ||
elif class_name == "CPUAdagradBuilder": | ||
return CPUAdagradBuilder | ||
elif class_name == "CPUAdamBuilder": | ||
return CPUAdamBuilder | ||
elif class_name == "FusedAdamBuilder": | ||
return FusedAdamBuilder | ||
else: | ||
return None | ||
|
||
def build_extension(self): | ||
try: | ||
from intel_extension_for_pytorch.xpu.cpp_extension import DpcppBuildExtension | ||
except ImportError: | ||
from intel_extension_for_pytorch.xpu.utils import DpcppBuildExtension | ||
return DpcppBuildExtension | ||
|
||
def export_envs(self): | ||
return [] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.