-
Notifications
You must be signed in to change notification settings - Fork 2.9k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Set up CI with Azure Pipelines #1
Closed
Closed
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
|
tmccrmck
added a commit
to tmccrmck/onnxruntime
that referenced
this pull request
Aug 28, 2019
Simple CMake setup for ONNX hosting
groszewn
pushed a commit
to groszewn/onnxruntime
that referenced
this pull request
Nov 13, 2019
…essor_double Update TreeEnsembleRegressor type support
chenfeiyue-cfy
pushed a commit
to chenfeiyue-cfy/onnxruntime
that referenced
this pull request
Feb 1, 2024
Added VSINPU ExecutionProvider for onnxruntime
kleiti
pushed a commit
to kleiti/onnxruntime
that referenced
this pull request
Mar 22, 2024
### Description Release OrtEnv before main function returns. Before this change, OrtEnv is deleted when C/C++ runtime destructs all global variables in ONNX Runtime's core framework. The callstack is like this: ``` * frame #0: 0x00007fffee39f5a6 libonnxruntime.so.1.16.0`onnxruntime::Environment::~Environment(this=0x00007fffee39fbf2) at environment.h:20:7 frame microsoft#1: 0x00007fffee39f614 libonnxruntime.so.1.16.0`std::default_delete<onnxruntime::Environment>::operator()(this=0x00007ffff4c30e50, __ptr=0x0000000005404b00) const at unique_ptr.h:85:2 frame microsoft#2: 0x00007fffee39edca libonnxruntime.so.1.16.0`std::unique_ptr<onnxruntime::Environment, std::default_delete<onnxruntime::Environment>>::~unique_ptr(this=0x5404b00) at unique_ptr.h:361:17 frame microsoft#3: 0x00007fffee39e2ab libonnxruntime.so.1.16.0`OrtEnv::~OrtEnv(this=0x00007ffff4c30e50) at ort_env.cc:43:1 frame microsoft#4: 0x00007fffee39fa96 libonnxruntime.so.1.16.0`std::default_delete<OrtEnv>::operator()(this=0x00007fffefff8f78, __ptr=0x00007ffff4c30e50) const at unique_ptr.h:85:2 frame microsoft#5: 0x00007fffee39f394 libonnxruntime.so.1.16.0`std::unique_ptr<OrtEnv, std::default_delete<OrtEnv>>::~unique_ptr(this=0x7ffff4c30e50) at unique_ptr.h:361:17 frame microsoft#6: 0x00007ffff78574b5 libc.so.6`__run_exit_handlers + 261 frame microsoft#7: 0x00007ffff7857630 libc.so.6`exit + 32 frame microsoft#8: 0x00007ffff783feb7 libc.so.6`__libc_start_call_main + 135 frame microsoft#9: 0x00007ffff783ff60 libc.so.6`__libc_start_main@@GLIBC_2.34 + 128 frame microsoft#10: 0x0000000000abbdee node`_start + 46 ``` After this change, OrtEnv will be deleted before the main function returns and nodejs is still alive.
siweic0
pushed a commit
to siweic0/onnxruntime-web
that referenced
this pull request
May 9, 2024
### Description Release OrtEnv before main function returns. Before this change, OrtEnv is deleted when C/C++ runtime destructs all global variables in ONNX Runtime's core framework. The callstack is like this: ``` * frame #0: 0x00007fffee39f5a6 libonnxruntime.so.1.16.0`onnxruntime::Environment::~Environment(this=0x00007fffee39fbf2) at environment.h:20:7 frame microsoft#1: 0x00007fffee39f614 libonnxruntime.so.1.16.0`std::default_delete<onnxruntime::Environment>::operator()(this=0x00007ffff4c30e50, __ptr=0x0000000005404b00) const at unique_ptr.h:85:2 frame microsoft#2: 0x00007fffee39edca libonnxruntime.so.1.16.0`std::unique_ptr<onnxruntime::Environment, std::default_delete<onnxruntime::Environment>>::~unique_ptr(this=0x5404b00) at unique_ptr.h:361:17 frame microsoft#3: 0x00007fffee39e2ab libonnxruntime.so.1.16.0`OrtEnv::~OrtEnv(this=0x00007ffff4c30e50) at ort_env.cc:43:1 frame microsoft#4: 0x00007fffee39fa96 libonnxruntime.so.1.16.0`std::default_delete<OrtEnv>::operator()(this=0x00007fffefff8f78, __ptr=0x00007ffff4c30e50) const at unique_ptr.h:85:2 frame microsoft#5: 0x00007fffee39f394 libonnxruntime.so.1.16.0`std::unique_ptr<OrtEnv, std::default_delete<OrtEnv>>::~unique_ptr(this=0x7ffff4c30e50) at unique_ptr.h:361:17 frame microsoft#6: 0x00007ffff78574b5 libc.so.6`__run_exit_handlers + 261 frame microsoft#7: 0x00007ffff7857630 libc.so.6`exit + 32 frame microsoft#8: 0x00007ffff783feb7 libc.so.6`__libc_start_call_main + 135 frame microsoft#9: 0x00007ffff783ff60 libc.so.6`__libc_start_main@@GLIBC_2.34 + 128 frame microsoft#10: 0x0000000000abbdee node`_start + 46 ``` After this change, OrtEnv will be deleted before the main function returns and nodejs is still alive.
PhaneeshB
pushed a commit
to PhaneeshB/onnxruntime
that referenced
this pull request
Jul 13, 2024
This is needed after iree-org/iree#16008 goes in.
carsonswope
added a commit
to boris-fx/onnxruntime
that referenced
this pull request
Aug 28, 2024
tianleiwu
added a commit
that referenced
this pull request
Oct 14, 2024
### Description Add [Lean Attention](https://arxiv.org/abs/2405.10480) and the integration with MultiHeadAttention operator for LLM in GPU. LeanAttention speeds up self-attention for the token-generation phase (decode-phase) of decoder-only transformer models, especially on long context lengths. - [x] Initial implementation of Lean Attention (by Srikant Bharadwaj) - [x] Integration with MultiHeadAttention operator - [x] Add parity tests - [x] Add benchmark #### Implementation Details (1) Lean Attention is enabled in build for Linux, and disabled for Windows (2) Lean Attention is disabled by default. Need enable it through cuda provider option sdpa_kernel, or use environment variable `ORT_ENABLE_LEAN_ATTENTION=1` (3) It only works for token-generation (sequence_length==1, past_sequence_length > 0). (4) Like flash attention, it only works in Ampere or newer GPU. We can revisit #1 and #2 after comparing with DecoderMaskedMultiHeadAttention and XQA kernels. #### Benchmark ``` cd onnxruntime/test/python/transformers /bin/bash benchmark_mha.sh lean ``` Example outputs in H100: Note that past and present does not share buffer for MHA for now, so we can see low tflops. The relative ratio will change after buffer sharing is enabled. But we expect that the order (kernel A is faster than B) will remain the same after buffer sharing is enabled. Note that common settings `sequence_length=1; causal=True;attn_bias=None;cuda_graph=False` are not shown in the below table. batch_size | past_sequence_length | num_heads | head_size | average_latency | tflops | kernel -- | -- | -- | -- | -- | -- | -- 1 | 512 | 16 | 64 | 0.000059 | 0.0178 | ort:flash 1 | 512 | 16 | 64 | 0.000068 | 0.0155 | ort:efficient 1 | 512 | 16 | 64 | 0.000065 | 0.0161 | ort:math 1 | 512 | 16 | 64 | 0.000060 | 0.0176 | ort:lean 1 | 512 | 32 | 128 | 0.000062 | 0.0674 | ort:flash 1 | 512 | 32 | 128 | 0.000064 | 0.0661 | ort:efficient 1 | 512 | 32 | 128 | 0.000067 | 0.0625 | ort:math 1 | 512 | 32 | 128 | 0.000062 | 0.0678 | ort:lean 1 | 1024 | 16 | 64 | 0.000061 | 0.0345 | ort:flash 1 | 1024 | 16 | 64 | 0.000086 | 0.0244 | ort:efficient 1 | 1024 | 16 | 64 | 0.000065 | 0.0322 | ort:math 1 | 1024 | 16 | 64 | 0.000063 | 0.0332 | ort:lean 1 | 1024 | 32 | 128 | 0.000075 | 0.1125 | ort:flash 1 | 1024 | 32 | 128 | 0.000088 | 0.0951 | ort:efficient 1 | 1024 | 32 | 128 | 0.000079 | 0.1068 | ort:math 1 | 1024 | 32 | 128 | 0.000072 | 0.1171 | ort:lean 1 | 2048 | 16 | 64 | 0.000069 | 0.0606 | ort:flash 1 | 2048 | 16 | 64 | 0.000125 | 0.0336 | ort:efficient 1 | 2048 | 16 | 64 | 0.000064 | 0.0655 | ort:lean 1 | 2048 | 32 | 128 | 0.000098 | 0.1720 | ort:flash 1 | 2048 | 32 | 128 | 0.000132 | 0.1270 | ort:efficient 1 | 2048 | 32 | 128 | 0.000092 | 0.1828 | ort:lean 1 | 4096 | 16 | 64 | 0.000076 | 0.1097 | ort:flash 1 | 4096 | 16 | 64 | 0.000207 | 0.0406 | ort:efficient 1 | 4096 | 16 | 64 | 0.000069 | 0.1209 | ort:lean 1 | 4096 | 32 | 128 | 0.000140 | 0.2394 | ort:flash 1 | 4096 | 32 | 128 | 0.000213 | 0.1575 | ort:efficient 1 | 4096 | 32 | 128 | 0.000139 | 0.2419 | ort:lean 1 | 8192 | 16 | 64 | 0.000104 | 0.1609 | ort:flash 1 | 8192 | 16 | 64 | 0.000392 | 0.0428 | ort:efficient 1 | 8192 | 16 | 64 | 0.000093 | 0.1809 | ort:lean 1 | 8192 | 32 | 128 | 0.000212 | 0.3160 | ort:flash 1 | 8192 | 32 | 128 | 0.000360 | 0.1866 | ort:efficient 1 | 8192 | 32 | 128 | 0.000212 | 0.3162 | ort:lean 1 | 16384 | 16 | 64 | 0.000139 | 0.2410 | ort:flash 1 | 16384 | 16 | 64 | 0.000731 | 0.0459 | ort:efficient 1 | 16384 | 16 | 64 | 0.000136 | 0.2465 | ort:lean 1 | 16384 | 32 | 128 | 0.000361 | 0.3722 | ort:flash 1 | 16384 | 32 | 128 | 0.000667 | 0.2014 | ort:efficient 1 | 16384 | 32 | 128 | 0.000357 | 0.3765 | ort:lean 1 | 32768 | 16 | 64 | 0.000210 | 0.3194 | ort:flash 1 | 32768 | 16 | 64 | 0.001428 | 0.0470 | ort:efficient 1 | 32768 | 16 | 64 | 0.000209 | 0.3211 | ort:lean 1 | 32768 | 32 | 128 | 0.000659 | 0.4074 | ort:flash 1 | 32768 | 32 | 128 | 0.001270 | 0.2114 | ort:efficient 1 | 32768 | 32 | 128 | 0.000651 | 0.4123 | ort:lean 1 | 65536 | 16 | 64 | 0.000355 | 0.3785 | ort:flash 1 | 65536 | 16 | 64 | 0.002736 | 0.0491 | ort:efficient 1 | 65536 | 16 | 64 | 0.000349 | 0.3845 | ort:lean 1 | 65536 | 32 | 128 | 0.001251 | 0.4290 | ort:flash 1 | 65536 | 32 | 128 | 0.002480 | 0.2165 | ort:efficient 1 | 65536 | 32 | 128 | 0.001239 | 0.4333 | ort:lean 4 | 512 | 16 | 64 | 0.000063 | 0.0665 | ort:flash 4 | 512 | 16 | 64 | 0.000069 | 0.0607 | ort:efficient 4 | 512 | 16 | 64 | 0.000066 | 0.0634 | ort:math 4 | 512 | 16 | 64 | 0.000062 | 0.0674 | ort:lean 4 | 512 | 32 | 128 | 0.000100 | 0.1677 | ort:flash 4 | 512 | 32 | 128 | 0.000099 | 0.1703 | ort:efficient 4 | 512 | 32 | 128 | 0.000108 | 0.1557 | ort:math 4 | 512 | 32 | 128 | 0.000092 | 0.1818 | ort:lean 4 | 1024 | 16 | 64 | 0.000077 | 0.1094 | ort:flash 4 | 1024 | 16 | 64 | 0.000099 | 0.0850 | ort:efficient 4 | 1024 | 16 | 64 | 0.000081 | 0.1038 | ort:math 4 | 1024 | 16 | 64 | 0.000072 | 0.1161 | ort:lean 4 | 1024 | 32 | 128 | 0.000143 | 0.2343 | ort:flash 4 | 1024 | 32 | 128 | 0.000137 | 0.2447 | ort:efficient 4 | 1024 | 32 | 128 | 0.000150 | 0.2245 | ort:math 4 | 1024 | 32 | 128 | 0.000135 | 0.2496 | ort:lean 4 | 2048 | 16 | 64 | 0.000096 | 0.1757 | ort:flash 4 | 2048 | 16 | 64 | 0.000156 | 0.1078 | ort:efficient 4 | 2048 | 16 | 64 | 0.000089 | 0.1892 | ort:lean 4 | 2048 | 32 | 128 | 0.000223 | 0.3010 | ort:flash 4 | 2048 | 32 | 128 | 0.000217 | 0.3101 | ort:efficient 4 | 2048 | 32 | 128 | 0.000209 | 0.3209 | ort:lean 4 | 4096 | 16 | 64 | 0.000137 | 0.2448 | ort:flash 4 | 4096 | 16 | 64 | 0.000256 | 0.1312 | ort:efficient 4 | 4096 | 16 | 64 | 0.000133 | 0.2530 | ort:lean 4 | 4096 | 32 | 128 | 0.000389 | 0.3450 | ort:flash 4 | 4096 | 32 | 128 | 0.000376 | 0.3574 | ort:efficient 4 | 4096 | 32 | 128 | 0.000354 | 0.3794 | ort:lean 4 | 8192 | 16 | 64 | 0.000210 | 0.3198 | ort:flash 4 | 8192 | 16 | 64 | 0.000453 | 0.1480 | ort:efficient 4 | 8192 | 16 | 64 | 0.000206 | 0.3260 | ort:lean 4 | 8192 | 32 | 128 | 0.000725 | 0.3705 | ort:flash 4 | 8192 | 32 | 128 | 0.000693 | 0.3874 | ort:efficient 4 | 8192 | 32 | 128 | 0.000653 | 0.4114 | ort:lean 4 | 16384 | 16 | 64 | 0.000355 | 0.3782 | ort:flash 4 | 16384 | 16 | 64 | 0.000849 | 0.1581 | ort:efficient 4 | 16384 | 16 | 64 | 0.000346 | 0.3874 | ort:lean 4 | 16384 | 32 | 128 | 0.001395 | 0.3848 | ort:flash 4 | 16384 | 32 | 128 | 0.001337 | 0.4017 | ort:efficient 4 | 16384 | 32 | 128 | 0.001252 | 0.4288 | ort:lean 4 | 32768 | 16 | 64 | 0.000647 | 0.4146 | ort:flash 4 | 32768 | 16 | 64 | 0.001649 | 0.1628 | ort:efficient 4 | 32768 | 16 | 64 | 0.000639 | 0.4204 | ort:lean 4 | 32768 | 32 | 128 | 0.002721 | 0.3947 | ort:flash 4 | 32768 | 32 | 128 | 0.002601 | 0.4128 | ort:efficient 4 | 32768 | 32 | 128 | 0.002434 | 0.4411 | ort:lean 4 | 65536 | 16 | 64 | 0.001231 | 0.4361 | ort:flash 4 | 65536 | 16 | 64 | 0.003238 | 0.1658 | ort:efficient 4 | 65536 | 16 | 64 | 0.001217 | 0.4412 | ort:lean 4 | 65536 | 32 | 128 | 0.005357 | 0.4009 | ort:flash 4 | 65536 | 32 | 128 | 0.005118 | 0.4196 | ort:efficient 4 | 65536 | 32 | 128 | 0.004781 | 0.4492 | ort:lean 16 | 512 | 16 | 64 | 0.000098 | 0.1724 | ort:flash 16 | 512 | 16 | 64 | 0.000104 | 0.1616 | ort:efficient 16 | 512 | 16 | 64 | 0.000118 | 0.1420 | ort:math 16 | 512 | 16 | 64 | 0.000087 | 0.1926 | ort:lean 16 | 512 | 32 | 128 | 0.000220 | 0.3062 | ort:flash 16 | 512 | 32 | 128 | 0.000208 | 0.3237 | ort:efficient 16 | 512 | 32 | 128 | 0.000237 | 0.2838 | ort:math 16 | 512 | 32 | 128 | 0.000209 | 0.3216 | ort:lean 16 | 1024 | 16 | 64 | 0.000136 | 0.2465 | ort:flash 16 | 1024 | 16 | 64 | 0.000150 | 0.2235 | ort:efficient 16 | 1024 | 16 | 64 | 0.000148 | 0.2266 | ort:math 16 | 1024 | 16 | 64 | 0.000129 | 0.2611 | ort:lean 16 | 1024 | 32 | 128 | 0.000367 | 0.3663 | ort:flash 16 | 1024 | 32 | 128 | 0.000351 | 0.3829 | ort:efficient 16 | 1024 | 32 | 128 | 0.000400 | 0.3357 | ort:math 16 | 1024 | 32 | 128 | 0.000349 | 0.3853 | ort:lean 16 | 2048 | 16 | 64 | 0.000209 | 0.3206 | ort:flash 16 | 2048 | 16 | 64 | 0.000243 | 0.2762 | ort:efficient 16 | 2048 | 16 | 64 | 0.000201 | 0.3338 | ort:lean 16 | 2048 | 32 | 128 | 0.000671 | 0.4002 | ort:flash 16 | 2048 | 32 | 128 | 0.000645 | 0.4163 | ort:efficient 16 | 2048 | 32 | 128 | 0.000642 | 0.4185 | ort:lean 16 | 4096 | 16 | 64 | 0.000360 | 0.3732 | ort:flash 16 | 4096 | 16 | 64 | 0.000425 | 0.3162 | ort:efficient 16 | 4096 | 16 | 64 | 0.000341 | 0.3933 | ort:lean 16 | 4096 | 32 | 128 | 0.001292 | 0.4156 | ort:flash 16 | 4096 | 32 | 128 | 0.001251 | 0.4291 | ort:efficient 16 | 4096 | 32 | 128 | 0.001241 | 0.4327 | ort:lean 16 | 8192 | 16 | 64 | 0.000666 | 0.4030 | ort:flash 16 | 8192 | 16 | 64 | 0.000804 | 0.3339 | ort:efficient 16 | 8192 | 16 | 64 | 0.000627 | 0.4283 | ort:lean 16 | 8192 | 32 | 128 | 0.002541 | 0.4226 | ort:flash 16 | 8192 | 32 | 128 | 0.002454 | 0.4376 | ort:efficient 16 | 8192 | 32 | 128 | 0.002438 | 0.4405 | ort:lean 16 | 16384 | 16 | 64 | 0.001292 | 0.4156 | ort:flash 16 | 16384 | 16 | 64 | 0.001571 | 0.3417 | ort:efficient 16 | 16384 | 16 | 64 | 0.001217 | 0.4411 | ort:lean 16 | 16384 | 32 | 128 | 0.005042 | 0.4260 | ort:flash 16 | 16384 | 32 | 128 | 0.004859 | 0.4420 | ort:efficient 16 | 16384 | 32 | 128 | 0.004827 | 0.4449 | ort:lean 16 | 32768 | 16 | 64 | 0.002537 | 0.4233 | ort:flash 16 | 32768 | 16 | 64 | 0.003103 | 0.3461 | ort:efficient 16 | 32768 | 16 | 64 | 0.002385 | 0.4501 | ort:lean 16 | 32768 | 32 | 128 | 0.009961 | 0.4312 | ort:flash 16 | 32768 | 32 | 128 | 0.009605 | 0.4472 | ort:efficient 16 | 32768 | 32 | 128 | 0.009524 | 0.4510 | ort:lean 16 | 65536 | 16 | 64 | 0.005019 | 0.4279 | ort:flash 16 | 65536 | 16 | 64 | 0.006133 | 0.3502 | ort:efficient 16 | 65536 | 16 | 64 | 0.004703 | 0.4566 | ort:lean 16 | 65536 | 32 | 128 | 0.019746 | 0.4350 | ort:flash 16 | 65536 | 32 | 128 | 0.019027 | 0.4515 | ort:efficient 16 | 65536 | 32 | 128 | 0.018864 | 0.4554 | ort:lean ### Motivation and Context <!-- - Why is this change required? What problem does it solve? - If it fixes an open issue, please link to the issue here. -->
guschmue
pushed a commit
that referenced
this pull request
Oct 18, 2024
### Description Add [Lean Attention](https://arxiv.org/abs/2405.10480) and the integration with MultiHeadAttention operator for LLM in GPU. LeanAttention speeds up self-attention for the token-generation phase (decode-phase) of decoder-only transformer models, especially on long context lengths. - [x] Initial implementation of Lean Attention (by Srikant Bharadwaj) - [x] Integration with MultiHeadAttention operator - [x] Add parity tests - [x] Add benchmark #### Implementation Details (1) Lean Attention is enabled in build for Linux, and disabled for Windows (2) Lean Attention is disabled by default. Need enable it through cuda provider option sdpa_kernel, or use environment variable `ORT_ENABLE_LEAN_ATTENTION=1` (3) It only works for token-generation (sequence_length==1, past_sequence_length > 0). (4) Like flash attention, it only works in Ampere or newer GPU. We can revisit #1 and #2 after comparing with DecoderMaskedMultiHeadAttention and XQA kernels. #### Benchmark ``` cd onnxruntime/test/python/transformers /bin/bash benchmark_mha.sh lean ``` Example outputs in H100: Note that past and present does not share buffer for MHA for now, so we can see low tflops. The relative ratio will change after buffer sharing is enabled. But we expect that the order (kernel A is faster than B) will remain the same after buffer sharing is enabled. Note that common settings `sequence_length=1; causal=True;attn_bias=None;cuda_graph=False` are not shown in the below table. batch_size | past_sequence_length | num_heads | head_size | average_latency | tflops | kernel -- | -- | -- | -- | -- | -- | -- 1 | 512 | 16 | 64 | 0.000059 | 0.0178 | ort:flash 1 | 512 | 16 | 64 | 0.000068 | 0.0155 | ort:efficient 1 | 512 | 16 | 64 | 0.000065 | 0.0161 | ort:math 1 | 512 | 16 | 64 | 0.000060 | 0.0176 | ort:lean 1 | 512 | 32 | 128 | 0.000062 | 0.0674 | ort:flash 1 | 512 | 32 | 128 | 0.000064 | 0.0661 | ort:efficient 1 | 512 | 32 | 128 | 0.000067 | 0.0625 | ort:math 1 | 512 | 32 | 128 | 0.000062 | 0.0678 | ort:lean 1 | 1024 | 16 | 64 | 0.000061 | 0.0345 | ort:flash 1 | 1024 | 16 | 64 | 0.000086 | 0.0244 | ort:efficient 1 | 1024 | 16 | 64 | 0.000065 | 0.0322 | ort:math 1 | 1024 | 16 | 64 | 0.000063 | 0.0332 | ort:lean 1 | 1024 | 32 | 128 | 0.000075 | 0.1125 | ort:flash 1 | 1024 | 32 | 128 | 0.000088 | 0.0951 | ort:efficient 1 | 1024 | 32 | 128 | 0.000079 | 0.1068 | ort:math 1 | 1024 | 32 | 128 | 0.000072 | 0.1171 | ort:lean 1 | 2048 | 16 | 64 | 0.000069 | 0.0606 | ort:flash 1 | 2048 | 16 | 64 | 0.000125 | 0.0336 | ort:efficient 1 | 2048 | 16 | 64 | 0.000064 | 0.0655 | ort:lean 1 | 2048 | 32 | 128 | 0.000098 | 0.1720 | ort:flash 1 | 2048 | 32 | 128 | 0.000132 | 0.1270 | ort:efficient 1 | 2048 | 32 | 128 | 0.000092 | 0.1828 | ort:lean 1 | 4096 | 16 | 64 | 0.000076 | 0.1097 | ort:flash 1 | 4096 | 16 | 64 | 0.000207 | 0.0406 | ort:efficient 1 | 4096 | 16 | 64 | 0.000069 | 0.1209 | ort:lean 1 | 4096 | 32 | 128 | 0.000140 | 0.2394 | ort:flash 1 | 4096 | 32 | 128 | 0.000213 | 0.1575 | ort:efficient 1 | 4096 | 32 | 128 | 0.000139 | 0.2419 | ort:lean 1 | 8192 | 16 | 64 | 0.000104 | 0.1609 | ort:flash 1 | 8192 | 16 | 64 | 0.000392 | 0.0428 | ort:efficient 1 | 8192 | 16 | 64 | 0.000093 | 0.1809 | ort:lean 1 | 8192 | 32 | 128 | 0.000212 | 0.3160 | ort:flash 1 | 8192 | 32 | 128 | 0.000360 | 0.1866 | ort:efficient 1 | 8192 | 32 | 128 | 0.000212 | 0.3162 | ort:lean 1 | 16384 | 16 | 64 | 0.000139 | 0.2410 | ort:flash 1 | 16384 | 16 | 64 | 0.000731 | 0.0459 | ort:efficient 1 | 16384 | 16 | 64 | 0.000136 | 0.2465 | ort:lean 1 | 16384 | 32 | 128 | 0.000361 | 0.3722 | ort:flash 1 | 16384 | 32 | 128 | 0.000667 | 0.2014 | ort:efficient 1 | 16384 | 32 | 128 | 0.000357 | 0.3765 | ort:lean 1 | 32768 | 16 | 64 | 0.000210 | 0.3194 | ort:flash 1 | 32768 | 16 | 64 | 0.001428 | 0.0470 | ort:efficient 1 | 32768 | 16 | 64 | 0.000209 | 0.3211 | ort:lean 1 | 32768 | 32 | 128 | 0.000659 | 0.4074 | ort:flash 1 | 32768 | 32 | 128 | 0.001270 | 0.2114 | ort:efficient 1 | 32768 | 32 | 128 | 0.000651 | 0.4123 | ort:lean 1 | 65536 | 16 | 64 | 0.000355 | 0.3785 | ort:flash 1 | 65536 | 16 | 64 | 0.002736 | 0.0491 | ort:efficient 1 | 65536 | 16 | 64 | 0.000349 | 0.3845 | ort:lean 1 | 65536 | 32 | 128 | 0.001251 | 0.4290 | ort:flash 1 | 65536 | 32 | 128 | 0.002480 | 0.2165 | ort:efficient 1 | 65536 | 32 | 128 | 0.001239 | 0.4333 | ort:lean 4 | 512 | 16 | 64 | 0.000063 | 0.0665 | ort:flash 4 | 512 | 16 | 64 | 0.000069 | 0.0607 | ort:efficient 4 | 512 | 16 | 64 | 0.000066 | 0.0634 | ort:math 4 | 512 | 16 | 64 | 0.000062 | 0.0674 | ort:lean 4 | 512 | 32 | 128 | 0.000100 | 0.1677 | ort:flash 4 | 512 | 32 | 128 | 0.000099 | 0.1703 | ort:efficient 4 | 512 | 32 | 128 | 0.000108 | 0.1557 | ort:math 4 | 512 | 32 | 128 | 0.000092 | 0.1818 | ort:lean 4 | 1024 | 16 | 64 | 0.000077 | 0.1094 | ort:flash 4 | 1024 | 16 | 64 | 0.000099 | 0.0850 | ort:efficient 4 | 1024 | 16 | 64 | 0.000081 | 0.1038 | ort:math 4 | 1024 | 16 | 64 | 0.000072 | 0.1161 | ort:lean 4 | 1024 | 32 | 128 | 0.000143 | 0.2343 | ort:flash 4 | 1024 | 32 | 128 | 0.000137 | 0.2447 | ort:efficient 4 | 1024 | 32 | 128 | 0.000150 | 0.2245 | ort:math 4 | 1024 | 32 | 128 | 0.000135 | 0.2496 | ort:lean 4 | 2048 | 16 | 64 | 0.000096 | 0.1757 | ort:flash 4 | 2048 | 16 | 64 | 0.000156 | 0.1078 | ort:efficient 4 | 2048 | 16 | 64 | 0.000089 | 0.1892 | ort:lean 4 | 2048 | 32 | 128 | 0.000223 | 0.3010 | ort:flash 4 | 2048 | 32 | 128 | 0.000217 | 0.3101 | ort:efficient 4 | 2048 | 32 | 128 | 0.000209 | 0.3209 | ort:lean 4 | 4096 | 16 | 64 | 0.000137 | 0.2448 | ort:flash 4 | 4096 | 16 | 64 | 0.000256 | 0.1312 | ort:efficient 4 | 4096 | 16 | 64 | 0.000133 | 0.2530 | ort:lean 4 | 4096 | 32 | 128 | 0.000389 | 0.3450 | ort:flash 4 | 4096 | 32 | 128 | 0.000376 | 0.3574 | ort:efficient 4 | 4096 | 32 | 128 | 0.000354 | 0.3794 | ort:lean 4 | 8192 | 16 | 64 | 0.000210 | 0.3198 | ort:flash 4 | 8192 | 16 | 64 | 0.000453 | 0.1480 | ort:efficient 4 | 8192 | 16 | 64 | 0.000206 | 0.3260 | ort:lean 4 | 8192 | 32 | 128 | 0.000725 | 0.3705 | ort:flash 4 | 8192 | 32 | 128 | 0.000693 | 0.3874 | ort:efficient 4 | 8192 | 32 | 128 | 0.000653 | 0.4114 | ort:lean 4 | 16384 | 16 | 64 | 0.000355 | 0.3782 | ort:flash 4 | 16384 | 16 | 64 | 0.000849 | 0.1581 | ort:efficient 4 | 16384 | 16 | 64 | 0.000346 | 0.3874 | ort:lean 4 | 16384 | 32 | 128 | 0.001395 | 0.3848 | ort:flash 4 | 16384 | 32 | 128 | 0.001337 | 0.4017 | ort:efficient 4 | 16384 | 32 | 128 | 0.001252 | 0.4288 | ort:lean 4 | 32768 | 16 | 64 | 0.000647 | 0.4146 | ort:flash 4 | 32768 | 16 | 64 | 0.001649 | 0.1628 | ort:efficient 4 | 32768 | 16 | 64 | 0.000639 | 0.4204 | ort:lean 4 | 32768 | 32 | 128 | 0.002721 | 0.3947 | ort:flash 4 | 32768 | 32 | 128 | 0.002601 | 0.4128 | ort:efficient 4 | 32768 | 32 | 128 | 0.002434 | 0.4411 | ort:lean 4 | 65536 | 16 | 64 | 0.001231 | 0.4361 | ort:flash 4 | 65536 | 16 | 64 | 0.003238 | 0.1658 | ort:efficient 4 | 65536 | 16 | 64 | 0.001217 | 0.4412 | ort:lean 4 | 65536 | 32 | 128 | 0.005357 | 0.4009 | ort:flash 4 | 65536 | 32 | 128 | 0.005118 | 0.4196 | ort:efficient 4 | 65536 | 32 | 128 | 0.004781 | 0.4492 | ort:lean 16 | 512 | 16 | 64 | 0.000098 | 0.1724 | ort:flash 16 | 512 | 16 | 64 | 0.000104 | 0.1616 | ort:efficient 16 | 512 | 16 | 64 | 0.000118 | 0.1420 | ort:math 16 | 512 | 16 | 64 | 0.000087 | 0.1926 | ort:lean 16 | 512 | 32 | 128 | 0.000220 | 0.3062 | ort:flash 16 | 512 | 32 | 128 | 0.000208 | 0.3237 | ort:efficient 16 | 512 | 32 | 128 | 0.000237 | 0.2838 | ort:math 16 | 512 | 32 | 128 | 0.000209 | 0.3216 | ort:lean 16 | 1024 | 16 | 64 | 0.000136 | 0.2465 | ort:flash 16 | 1024 | 16 | 64 | 0.000150 | 0.2235 | ort:efficient 16 | 1024 | 16 | 64 | 0.000148 | 0.2266 | ort:math 16 | 1024 | 16 | 64 | 0.000129 | 0.2611 | ort:lean 16 | 1024 | 32 | 128 | 0.000367 | 0.3663 | ort:flash 16 | 1024 | 32 | 128 | 0.000351 | 0.3829 | ort:efficient 16 | 1024 | 32 | 128 | 0.000400 | 0.3357 | ort:math 16 | 1024 | 32 | 128 | 0.000349 | 0.3853 | ort:lean 16 | 2048 | 16 | 64 | 0.000209 | 0.3206 | ort:flash 16 | 2048 | 16 | 64 | 0.000243 | 0.2762 | ort:efficient 16 | 2048 | 16 | 64 | 0.000201 | 0.3338 | ort:lean 16 | 2048 | 32 | 128 | 0.000671 | 0.4002 | ort:flash 16 | 2048 | 32 | 128 | 0.000645 | 0.4163 | ort:efficient 16 | 2048 | 32 | 128 | 0.000642 | 0.4185 | ort:lean 16 | 4096 | 16 | 64 | 0.000360 | 0.3732 | ort:flash 16 | 4096 | 16 | 64 | 0.000425 | 0.3162 | ort:efficient 16 | 4096 | 16 | 64 | 0.000341 | 0.3933 | ort:lean 16 | 4096 | 32 | 128 | 0.001292 | 0.4156 | ort:flash 16 | 4096 | 32 | 128 | 0.001251 | 0.4291 | ort:efficient 16 | 4096 | 32 | 128 | 0.001241 | 0.4327 | ort:lean 16 | 8192 | 16 | 64 | 0.000666 | 0.4030 | ort:flash 16 | 8192 | 16 | 64 | 0.000804 | 0.3339 | ort:efficient 16 | 8192 | 16 | 64 | 0.000627 | 0.4283 | ort:lean 16 | 8192 | 32 | 128 | 0.002541 | 0.4226 | ort:flash 16 | 8192 | 32 | 128 | 0.002454 | 0.4376 | ort:efficient 16 | 8192 | 32 | 128 | 0.002438 | 0.4405 | ort:lean 16 | 16384 | 16 | 64 | 0.001292 | 0.4156 | ort:flash 16 | 16384 | 16 | 64 | 0.001571 | 0.3417 | ort:efficient 16 | 16384 | 16 | 64 | 0.001217 | 0.4411 | ort:lean 16 | 16384 | 32 | 128 | 0.005042 | 0.4260 | ort:flash 16 | 16384 | 32 | 128 | 0.004859 | 0.4420 | ort:efficient 16 | 16384 | 32 | 128 | 0.004827 | 0.4449 | ort:lean 16 | 32768 | 16 | 64 | 0.002537 | 0.4233 | ort:flash 16 | 32768 | 16 | 64 | 0.003103 | 0.3461 | ort:efficient 16 | 32768 | 16 | 64 | 0.002385 | 0.4501 | ort:lean 16 | 32768 | 32 | 128 | 0.009961 | 0.4312 | ort:flash 16 | 32768 | 32 | 128 | 0.009605 | 0.4472 | ort:efficient 16 | 32768 | 32 | 128 | 0.009524 | 0.4510 | ort:lean 16 | 65536 | 16 | 64 | 0.005019 | 0.4279 | ort:flash 16 | 65536 | 16 | 64 | 0.006133 | 0.3502 | ort:efficient 16 | 65536 | 16 | 64 | 0.004703 | 0.4566 | ort:lean 16 | 65536 | 32 | 128 | 0.019746 | 0.4350 | ort:flash 16 | 65536 | 32 | 128 | 0.019027 | 0.4515 | ort:efficient 16 | 65536 | 32 | 128 | 0.018864 | 0.4554 | ort:lean ### Motivation and Context <!-- - Why is this change required? What problem does it solve? - If it fixes an open issue, please link to the issue here. -->
This was referenced Oct 23, 2024
ishwar-raut1
pushed a commit
to ishwar-raut1/onnxruntime
that referenced
this pull request
Nov 19, 2024
### Description Add [Lean Attention](https://arxiv.org/abs/2405.10480) and the integration with MultiHeadAttention operator for LLM in GPU. LeanAttention speeds up self-attention for the token-generation phase (decode-phase) of decoder-only transformer models, especially on long context lengths. - [x] Initial implementation of Lean Attention (by Srikant Bharadwaj) - [x] Integration with MultiHeadAttention operator - [x] Add parity tests - [x] Add benchmark #### Implementation Details (1) Lean Attention is enabled in build for Linux, and disabled for Windows (2) Lean Attention is disabled by default. Need enable it through cuda provider option sdpa_kernel, or use environment variable `ORT_ENABLE_LEAN_ATTENTION=1` (3) It only works for token-generation (sequence_length==1, past_sequence_length > 0). (4) Like flash attention, it only works in Ampere or newer GPU. We can revisit microsoft#1 and microsoft#2 after comparing with DecoderMaskedMultiHeadAttention and XQA kernels. #### Benchmark ``` cd onnxruntime/test/python/transformers /bin/bash benchmark_mha.sh lean ``` Example outputs in H100: Note that past and present does not share buffer for MHA for now, so we can see low tflops. The relative ratio will change after buffer sharing is enabled. But we expect that the order (kernel A is faster than B) will remain the same after buffer sharing is enabled. Note that common settings `sequence_length=1; causal=True;attn_bias=None;cuda_graph=False` are not shown in the below table. batch_size | past_sequence_length | num_heads | head_size | average_latency | tflops | kernel -- | -- | -- | -- | -- | -- | -- 1 | 512 | 16 | 64 | 0.000059 | 0.0178 | ort:flash 1 | 512 | 16 | 64 | 0.000068 | 0.0155 | ort:efficient 1 | 512 | 16 | 64 | 0.000065 | 0.0161 | ort:math 1 | 512 | 16 | 64 | 0.000060 | 0.0176 | ort:lean 1 | 512 | 32 | 128 | 0.000062 | 0.0674 | ort:flash 1 | 512 | 32 | 128 | 0.000064 | 0.0661 | ort:efficient 1 | 512 | 32 | 128 | 0.000067 | 0.0625 | ort:math 1 | 512 | 32 | 128 | 0.000062 | 0.0678 | ort:lean 1 | 1024 | 16 | 64 | 0.000061 | 0.0345 | ort:flash 1 | 1024 | 16 | 64 | 0.000086 | 0.0244 | ort:efficient 1 | 1024 | 16 | 64 | 0.000065 | 0.0322 | ort:math 1 | 1024 | 16 | 64 | 0.000063 | 0.0332 | ort:lean 1 | 1024 | 32 | 128 | 0.000075 | 0.1125 | ort:flash 1 | 1024 | 32 | 128 | 0.000088 | 0.0951 | ort:efficient 1 | 1024 | 32 | 128 | 0.000079 | 0.1068 | ort:math 1 | 1024 | 32 | 128 | 0.000072 | 0.1171 | ort:lean 1 | 2048 | 16 | 64 | 0.000069 | 0.0606 | ort:flash 1 | 2048 | 16 | 64 | 0.000125 | 0.0336 | ort:efficient 1 | 2048 | 16 | 64 | 0.000064 | 0.0655 | ort:lean 1 | 2048 | 32 | 128 | 0.000098 | 0.1720 | ort:flash 1 | 2048 | 32 | 128 | 0.000132 | 0.1270 | ort:efficient 1 | 2048 | 32 | 128 | 0.000092 | 0.1828 | ort:lean 1 | 4096 | 16 | 64 | 0.000076 | 0.1097 | ort:flash 1 | 4096 | 16 | 64 | 0.000207 | 0.0406 | ort:efficient 1 | 4096 | 16 | 64 | 0.000069 | 0.1209 | ort:lean 1 | 4096 | 32 | 128 | 0.000140 | 0.2394 | ort:flash 1 | 4096 | 32 | 128 | 0.000213 | 0.1575 | ort:efficient 1 | 4096 | 32 | 128 | 0.000139 | 0.2419 | ort:lean 1 | 8192 | 16 | 64 | 0.000104 | 0.1609 | ort:flash 1 | 8192 | 16 | 64 | 0.000392 | 0.0428 | ort:efficient 1 | 8192 | 16 | 64 | 0.000093 | 0.1809 | ort:lean 1 | 8192 | 32 | 128 | 0.000212 | 0.3160 | ort:flash 1 | 8192 | 32 | 128 | 0.000360 | 0.1866 | ort:efficient 1 | 8192 | 32 | 128 | 0.000212 | 0.3162 | ort:lean 1 | 16384 | 16 | 64 | 0.000139 | 0.2410 | ort:flash 1 | 16384 | 16 | 64 | 0.000731 | 0.0459 | ort:efficient 1 | 16384 | 16 | 64 | 0.000136 | 0.2465 | ort:lean 1 | 16384 | 32 | 128 | 0.000361 | 0.3722 | ort:flash 1 | 16384 | 32 | 128 | 0.000667 | 0.2014 | ort:efficient 1 | 16384 | 32 | 128 | 0.000357 | 0.3765 | ort:lean 1 | 32768 | 16 | 64 | 0.000210 | 0.3194 | ort:flash 1 | 32768 | 16 | 64 | 0.001428 | 0.0470 | ort:efficient 1 | 32768 | 16 | 64 | 0.000209 | 0.3211 | ort:lean 1 | 32768 | 32 | 128 | 0.000659 | 0.4074 | ort:flash 1 | 32768 | 32 | 128 | 0.001270 | 0.2114 | ort:efficient 1 | 32768 | 32 | 128 | 0.000651 | 0.4123 | ort:lean 1 | 65536 | 16 | 64 | 0.000355 | 0.3785 | ort:flash 1 | 65536 | 16 | 64 | 0.002736 | 0.0491 | ort:efficient 1 | 65536 | 16 | 64 | 0.000349 | 0.3845 | ort:lean 1 | 65536 | 32 | 128 | 0.001251 | 0.4290 | ort:flash 1 | 65536 | 32 | 128 | 0.002480 | 0.2165 | ort:efficient 1 | 65536 | 32 | 128 | 0.001239 | 0.4333 | ort:lean 4 | 512 | 16 | 64 | 0.000063 | 0.0665 | ort:flash 4 | 512 | 16 | 64 | 0.000069 | 0.0607 | ort:efficient 4 | 512 | 16 | 64 | 0.000066 | 0.0634 | ort:math 4 | 512 | 16 | 64 | 0.000062 | 0.0674 | ort:lean 4 | 512 | 32 | 128 | 0.000100 | 0.1677 | ort:flash 4 | 512 | 32 | 128 | 0.000099 | 0.1703 | ort:efficient 4 | 512 | 32 | 128 | 0.000108 | 0.1557 | ort:math 4 | 512 | 32 | 128 | 0.000092 | 0.1818 | ort:lean 4 | 1024 | 16 | 64 | 0.000077 | 0.1094 | ort:flash 4 | 1024 | 16 | 64 | 0.000099 | 0.0850 | ort:efficient 4 | 1024 | 16 | 64 | 0.000081 | 0.1038 | ort:math 4 | 1024 | 16 | 64 | 0.000072 | 0.1161 | ort:lean 4 | 1024 | 32 | 128 | 0.000143 | 0.2343 | ort:flash 4 | 1024 | 32 | 128 | 0.000137 | 0.2447 | ort:efficient 4 | 1024 | 32 | 128 | 0.000150 | 0.2245 | ort:math 4 | 1024 | 32 | 128 | 0.000135 | 0.2496 | ort:lean 4 | 2048 | 16 | 64 | 0.000096 | 0.1757 | ort:flash 4 | 2048 | 16 | 64 | 0.000156 | 0.1078 | ort:efficient 4 | 2048 | 16 | 64 | 0.000089 | 0.1892 | ort:lean 4 | 2048 | 32 | 128 | 0.000223 | 0.3010 | ort:flash 4 | 2048 | 32 | 128 | 0.000217 | 0.3101 | ort:efficient 4 | 2048 | 32 | 128 | 0.000209 | 0.3209 | ort:lean 4 | 4096 | 16 | 64 | 0.000137 | 0.2448 | ort:flash 4 | 4096 | 16 | 64 | 0.000256 | 0.1312 | ort:efficient 4 | 4096 | 16 | 64 | 0.000133 | 0.2530 | ort:lean 4 | 4096 | 32 | 128 | 0.000389 | 0.3450 | ort:flash 4 | 4096 | 32 | 128 | 0.000376 | 0.3574 | ort:efficient 4 | 4096 | 32 | 128 | 0.000354 | 0.3794 | ort:lean 4 | 8192 | 16 | 64 | 0.000210 | 0.3198 | ort:flash 4 | 8192 | 16 | 64 | 0.000453 | 0.1480 | ort:efficient 4 | 8192 | 16 | 64 | 0.000206 | 0.3260 | ort:lean 4 | 8192 | 32 | 128 | 0.000725 | 0.3705 | ort:flash 4 | 8192 | 32 | 128 | 0.000693 | 0.3874 | ort:efficient 4 | 8192 | 32 | 128 | 0.000653 | 0.4114 | ort:lean 4 | 16384 | 16 | 64 | 0.000355 | 0.3782 | ort:flash 4 | 16384 | 16 | 64 | 0.000849 | 0.1581 | ort:efficient 4 | 16384 | 16 | 64 | 0.000346 | 0.3874 | ort:lean 4 | 16384 | 32 | 128 | 0.001395 | 0.3848 | ort:flash 4 | 16384 | 32 | 128 | 0.001337 | 0.4017 | ort:efficient 4 | 16384 | 32 | 128 | 0.001252 | 0.4288 | ort:lean 4 | 32768 | 16 | 64 | 0.000647 | 0.4146 | ort:flash 4 | 32768 | 16 | 64 | 0.001649 | 0.1628 | ort:efficient 4 | 32768 | 16 | 64 | 0.000639 | 0.4204 | ort:lean 4 | 32768 | 32 | 128 | 0.002721 | 0.3947 | ort:flash 4 | 32768 | 32 | 128 | 0.002601 | 0.4128 | ort:efficient 4 | 32768 | 32 | 128 | 0.002434 | 0.4411 | ort:lean 4 | 65536 | 16 | 64 | 0.001231 | 0.4361 | ort:flash 4 | 65536 | 16 | 64 | 0.003238 | 0.1658 | ort:efficient 4 | 65536 | 16 | 64 | 0.001217 | 0.4412 | ort:lean 4 | 65536 | 32 | 128 | 0.005357 | 0.4009 | ort:flash 4 | 65536 | 32 | 128 | 0.005118 | 0.4196 | ort:efficient 4 | 65536 | 32 | 128 | 0.004781 | 0.4492 | ort:lean 16 | 512 | 16 | 64 | 0.000098 | 0.1724 | ort:flash 16 | 512 | 16 | 64 | 0.000104 | 0.1616 | ort:efficient 16 | 512 | 16 | 64 | 0.000118 | 0.1420 | ort:math 16 | 512 | 16 | 64 | 0.000087 | 0.1926 | ort:lean 16 | 512 | 32 | 128 | 0.000220 | 0.3062 | ort:flash 16 | 512 | 32 | 128 | 0.000208 | 0.3237 | ort:efficient 16 | 512 | 32 | 128 | 0.000237 | 0.2838 | ort:math 16 | 512 | 32 | 128 | 0.000209 | 0.3216 | ort:lean 16 | 1024 | 16 | 64 | 0.000136 | 0.2465 | ort:flash 16 | 1024 | 16 | 64 | 0.000150 | 0.2235 | ort:efficient 16 | 1024 | 16 | 64 | 0.000148 | 0.2266 | ort:math 16 | 1024 | 16 | 64 | 0.000129 | 0.2611 | ort:lean 16 | 1024 | 32 | 128 | 0.000367 | 0.3663 | ort:flash 16 | 1024 | 32 | 128 | 0.000351 | 0.3829 | ort:efficient 16 | 1024 | 32 | 128 | 0.000400 | 0.3357 | ort:math 16 | 1024 | 32 | 128 | 0.000349 | 0.3853 | ort:lean 16 | 2048 | 16 | 64 | 0.000209 | 0.3206 | ort:flash 16 | 2048 | 16 | 64 | 0.000243 | 0.2762 | ort:efficient 16 | 2048 | 16 | 64 | 0.000201 | 0.3338 | ort:lean 16 | 2048 | 32 | 128 | 0.000671 | 0.4002 | ort:flash 16 | 2048 | 32 | 128 | 0.000645 | 0.4163 | ort:efficient 16 | 2048 | 32 | 128 | 0.000642 | 0.4185 | ort:lean 16 | 4096 | 16 | 64 | 0.000360 | 0.3732 | ort:flash 16 | 4096 | 16 | 64 | 0.000425 | 0.3162 | ort:efficient 16 | 4096 | 16 | 64 | 0.000341 | 0.3933 | ort:lean 16 | 4096 | 32 | 128 | 0.001292 | 0.4156 | ort:flash 16 | 4096 | 32 | 128 | 0.001251 | 0.4291 | ort:efficient 16 | 4096 | 32 | 128 | 0.001241 | 0.4327 | ort:lean 16 | 8192 | 16 | 64 | 0.000666 | 0.4030 | ort:flash 16 | 8192 | 16 | 64 | 0.000804 | 0.3339 | ort:efficient 16 | 8192 | 16 | 64 | 0.000627 | 0.4283 | ort:lean 16 | 8192 | 32 | 128 | 0.002541 | 0.4226 | ort:flash 16 | 8192 | 32 | 128 | 0.002454 | 0.4376 | ort:efficient 16 | 8192 | 32 | 128 | 0.002438 | 0.4405 | ort:lean 16 | 16384 | 16 | 64 | 0.001292 | 0.4156 | ort:flash 16 | 16384 | 16 | 64 | 0.001571 | 0.3417 | ort:efficient 16 | 16384 | 16 | 64 | 0.001217 | 0.4411 | ort:lean 16 | 16384 | 32 | 128 | 0.005042 | 0.4260 | ort:flash 16 | 16384 | 32 | 128 | 0.004859 | 0.4420 | ort:efficient 16 | 16384 | 32 | 128 | 0.004827 | 0.4449 | ort:lean 16 | 32768 | 16 | 64 | 0.002537 | 0.4233 | ort:flash 16 | 32768 | 16 | 64 | 0.003103 | 0.3461 | ort:efficient 16 | 32768 | 16 | 64 | 0.002385 | 0.4501 | ort:lean 16 | 32768 | 32 | 128 | 0.009961 | 0.4312 | ort:flash 16 | 32768 | 32 | 128 | 0.009605 | 0.4472 | ort:efficient 16 | 32768 | 32 | 128 | 0.009524 | 0.4510 | ort:lean 16 | 65536 | 16 | 64 | 0.005019 | 0.4279 | ort:flash 16 | 65536 | 16 | 64 | 0.006133 | 0.3502 | ort:efficient 16 | 65536 | 16 | 64 | 0.004703 | 0.4566 | ort:lean 16 | 65536 | 32 | 128 | 0.019746 | 0.4350 | ort:flash 16 | 65536 | 32 | 128 | 0.019027 | 0.4515 | ort:efficient 16 | 65536 | 32 | 128 | 0.018864 | 0.4554 | ort:lean ### Motivation and Context <!-- - Why is this change required? What problem does it solve? - If it fixes an open issue, please link to the issue here. -->
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.