Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[webgpu native] Add transpose shared #22098

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 74 additions & 17 deletions onnxruntime/core/providers/webgpu/tensor/transpose.cc
Original file line number Diff line number Diff line change
Expand Up @@ -47,11 +47,11 @@ ONNX_OPERATOR_KERNEL_EX(
.TypeConstraint("T", WebGpuSupportedNumberTypes()),
Transpose);

const std::string AppendPermFunction(gsl::span<const size_t> perm) {
const std::string AppendPermFunction(gsl::span<const int64_t> perm) {
std::ostringstream ss;
ss.imbue(std::locale::classic());
ss << "fn perm(i: y_indices_t)->x_indices_t {\n"
" var a: x_indices_t;\n";
ss << "fn perm(i: output_indices_t)->a_indices_t {\n"
" var a: a_indices_t;\n";
for (size_t i = 0; i < perm.size(); ++i) {
ss << " a[" << perm[i] << "] = i[" << i << "];\n";
}
Expand All @@ -60,21 +60,52 @@ const std::string AppendPermFunction(gsl::span<const size_t> perm) {
return ss.str();
}

auto SqueezeShape(const gsl::span<const int64_t>& shape, const gsl::span<const size_t>& adjusted_perm, InlinedVector<int64_t>& new_shape, InlinedVector<int64_t>& new_perm) {
for (auto i = 0; i < shape.size(); ++i) {
if (shape[i] != 1) {
new_shape.push_back(shape[i]);
}
if (shape[adjusted_perm[i]] != 1) {
new_perm.push_back(adjusted_perm[i]);
}
}
};

Status TransposeProgram::GenerateShaderCode(ShaderHelper& shader) const {
const auto& input = shader.AddInput("x", ShaderUsage::UseUniform | ShaderUsage::UseIndicesTypeAlias);
const auto& output = shader.AddOutput("y", ShaderUsage::UseUniform | ShaderUsage::UseIndicesTypeAlias);
shader.AppendImplementation(AppendPermFunction(this->perm_));
shader.SetMainFunctionBody(shader.GuardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size"),
" let indices = ", output.OffsetToIndices("global_idx"),
";\n"
" let x_indices = perm(indices); \n"
" ",
output.SetByOffset("global_idx", input.GetByIndices("x_indices")));
const auto& input = shader.AddInput("a", ShaderUsage::UseUniform | ShaderUsage::UseIndicesTypeAlias);
const auto& output = shader.AddOutput("output", ShaderUsage::UseUniform | ShaderUsage::UseIndicesTypeAlias | ShaderUsage::UseValueTypeAlias);

if (use_shared_) {
shader.AppendImplementation("var<workgroup> tile : array<array<output_value_t, tile_size + 1>, tile_size>;\n");
shader.SetMainFunctionBody(
" let stride = (uniforms.output_shape[1] - 1) / tile_size + 1;\n"
" let workgroup_id_x = workgroup_idx % stride;\n"
" let workgroup_id_y = workgroup_idx / stride;\n"
" let input_col = workgroup_id_y * tile_size + local_id.x;\n"
" let input_row = workgroup_id_x * tile_size + local_id.y;\n"
" if (input_row < uniforms.a_shape[0] && input_col < uniforms.a_shape[1]) {\n"
" tile[local_id.y][local_id.x] = " +
input.GetByIndices("a_indices_t(input_row, input_col)") +
";\n"
" }\n"
" workgroupBarrier();\n"
" let output_col = workgroup_id_x * tile_size + local_id.x;\n"
" let output_row = workgroup_id_y * tile_size + local_id.y;\n"
" if (output_row < uniforms.output_shape[0] && output_col < uniforms.output_shape[1]) {\n " +
output.SetByIndices("output_indices_t(output_row, output_col)", "tile[local_id.x][local_id.y]") + "\n }");
} else {
shader.AppendImplementation(AppendPermFunction(this->perm_));
shader.SetMainFunctionBody(shader.GuardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size"),
" let indices = ", output.OffsetToIndices("global_idx"),
";\n"
" let x_indices = perm(indices);\n",
" ",
output.SetByOffset("global_idx", input.GetByIndices("x_indices")));
}
return Status::OK();
}

Status Transpose::ComputeInternal(ComputeContext& context) const {
// TODO: there is an optimized version of transpose to port.
const auto* input_tensor = context.Input(0);
const TensorShape& input_shape = input_tensor->Shape();
int32_t rank = gsl::narrow_cast<int32_t>(input_shape.NumDimensions());
Expand All @@ -86,16 +117,42 @@ Status Transpose::ComputeInternal(ComputeContext& context) const {
TensorShape output_shape(output_dims);
auto* output_tensor = context.Output(0, output_shape);

InlinedVector<int64_t> new_shape{};
InlinedVector<int64_t> new_perm{};
SqueezeShape(input_shape.GetDims(), *p_perm, new_shape, new_perm);
const bool channels_last = new_perm == InlinedVector<int64_t>({2, 3, 1});
const bool channels_first = new_perm == InlinedVector<int64_t>({3, 1, 2});
const bool use_shared = (new_shape.size() == 2 && new_perm[0] > new_perm[1]) || channels_last || channels_first;
auto new_input_shape = input_shape;
TensorShape new_output_shape(output_dims);
if (use_shared) {
new_input_shape = channels_last
? TensorShape({new_shape[0], new_shape[1] * new_shape[2]})
: channels_first
? TensorShape({new_shape[0] * new_shape[1], new_shape[2]})
: new_shape;
new_output_shape = TensorShape({new_input_shape[1], new_input_shape[0]});
}

uint32_t output_size = gsl::narrow_cast<int32_t>(input_tensor->Shape().Size());
TransposeProgram program{*p_perm};
TransposeProgram program{*p_perm, use_shared};
if (use_shared) {
program.SetWorkgroupSize(TILE_SIZE, TILE_SIZE, 1);
}

program
.CacheHint(absl::StrJoin(*p_perm, "-"))
.AddInputs({{input_tensor, ProgramTensorMetadataDependency::TypeAndRank}})
.AddOutputs({output_tensor})
.SetDispatchGroupSize((output_size + WORKGROUP_SIZE - 1) / WORKGROUP_SIZE)
.AddInputs({{input_tensor, ProgramTensorMetadataDependency::TypeAndRank, new_input_shape, 1}})
fs-eire marked this conversation as resolved.
Show resolved Hide resolved
.AddOutputs({{output_tensor, ProgramTensorMetadataDependency::None, new_output_shape, 1}})
.SetDispatchGroupSize(static_cast<uint32_t>((new_output_shape[1] + TILE_SIZE - 1) / TILE_SIZE),
static_cast<uint32_t>(((new_output_shape[0] + TILE_SIZE - 1) / TILE_SIZE)))
.AddUniformVariables({
{static_cast<uint32_t>(output_size)},
});

use_shared ? program.SetDispatchGroupSize(static_cast<uint32_t>((new_output_shape[1] + TILE_SIZE - 1) / TILE_SIZE),
static_cast<uint32_t>(((new_output_shape[0] + TILE_SIZE - 1) / TILE_SIZE)))
: program.SetDispatchGroupSize((output_size + WORKGROUP_SIZE - 1) / WORKGROUP_SIZE);
return context.RunProgram(program);
}

Expand Down
24 changes: 13 additions & 11 deletions onnxruntime/core/providers/webgpu/tensor/transpose.h
Original file line number Diff line number Diff line change
Expand Up @@ -11,26 +11,28 @@
namespace onnxruntime {
namespace webgpu {

class Transpose final : public WebGpuKernel, public TransposeBase {
public:
Transpose(const OpKernelInfo& info) : WebGpuKernel{info}, TransposeBase{info} {
}
Status ComputeInternal(ComputeContext& context) const override;
constexpr static uint32_t TILE_SIZE = 16;
};

class TransposeProgram final : public Program<TransposeProgram> {
public:
TransposeProgram(const gsl::span<const size_t>& permutations)
: Program{"Transpose"}, perm_(permutations.begin(), permutations.end()) {
TransposeProgram(const gsl::span<const size_t>& permutations, bool use_shared)
: Program{"Transpose"}, perm_(permutations.begin(), permutations.end()), use_shared_(use_shared) {
}

Status GenerateShaderCode(ShaderHelper& sh) const override;

WEBGPU_PROGRAM_DEFINE_UNIFORM_VARIABLES({"output_size", ProgramUniformVariableDataType::Uint32});
WEBGPU_PROGRAM_DEFINE_CONSTANTS({"tile_size", Transpose::TILE_SIZE});

private:
InlinedVector<size_t> perm_;
};

class Transpose final : public WebGpuKernel, public TransposeBase {
public:
Transpose(const OpKernelInfo& info) : WebGpuKernel{info}, TransposeBase{info} {
}

Status ComputeInternal(ComputeContext& context) const override;
InlinedVector<int64_t> perm_;
const bool use_shared_;
};

} // namespace webgpu
Expand Down