Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add VitSam #743

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions mindcv/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@
vgg,
visformer,
vit,
vit_sam,
volo,
xception,
xcit,
Expand Down Expand Up @@ -109,6 +110,7 @@
from .vgg import *
from .visformer import *
from .vit import *
from .vit_sam import *
from .volo import *
from .xception import *
from .xcit import *
Expand Down Expand Up @@ -168,6 +170,7 @@
__all__.extend(vgg.__all__)
__all__.extend(visformer.__all__)
__all__.extend(vit.__all__)
__all__.extend(vit_sam.__all__)
__all__.extend(volo.__all__)
__all__.extend(["Xception", "xception"])
__all__.extend(xcit.__all__)
4 changes: 0 additions & 4 deletions mindcv/models/layers/format.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
from enum import Enum
from typing import Union

import mindspore

Expand All @@ -11,9 +10,6 @@ class Format(str, Enum):
NLC = 'NLC'


FormatT = Union[str, Format]


def nchw_to(x: mindspore.Tensor, fmt: Format):
if fmt == Format.NHWC:
x = x.permute(0, 2, 3, 1)
Expand Down
26 changes: 13 additions & 13 deletions mindcv/models/layers/patch_dropout.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,41 +8,41 @@ class PatchDropout(nn.Cell):
"""
https://arxiv.org/abs/2212.00794
"""

def __init__(
self,
prob: float = 0.5,
num_prefix_tokens: int = 1,
ordered: bool = False,
return_indices: bool = False,
self,
prob: float = 0.5,
num_prefix_tokens: int = 1,
ordered: bool = False,
return_indices: bool = False,
):
super().__init__()
assert 0 <= prob < 1.
assert 0 <= prob < 1.0
self.prob = prob
self.num_prefix_tokens = num_prefix_tokens # exclude CLS token (or other prefix tokens)
self.ordered = ordered
self.return_indices = return_indices
self.sort = ops.Sort()

def forward(self, x):
if not self.training or self.prob == 0.:
def construct(self, x):
if not self.training or self.prob == 0.0:
if self.return_indices:
return x, None
return x

if self.num_prefix_tokens:
prefix_tokens, x = x[:, :self.num_prefix_tokens], x[:, self.num_prefix_tokens:]
prefix_tokens, x = x[:, : self.num_prefix_tokens], x[:, self.num_prefix_tokens :]
else:
prefix_tokens = None

B = x.shape[0]
L = x.shape[1]
num_keep = max(1, int(L * (1. - self.prob)))
_, indices = self.sort(ms.Tensor(np.random.rand(B, L)).astype(ms.float32))
num_keep = max(1, int(L * (1.0 - self.prob)))
_, indices = ops.sort(ms.Tensor(np.random.rand(B, L)).astype(ms.float32))
keep_indices = indices[:, :num_keep]
if self.ordered:
# NOTE does not need to maintain patch order in typical transformer use,
# but possibly useful for debug / visualization
keep_indices, _ = self.sort(keep_indices)
keep_indices, _ = ops.sort(keep_indices)
keep_indices = ops.broadcast_to(ops.expand_dims(keep_indices, axis=-1), (-1, -1, x.shape[2]))
x = ops.gather_elements(x, dim=1, index=keep_indices)

Expand Down
11 changes: 6 additions & 5 deletions mindcv/models/layers/patch_embed.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@ class PatchEmbed(nn.Cell):
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Cell, optional): Normalization layer. Default: None
"""

output_fmt: Format

def __init__(
Expand All @@ -37,11 +38,11 @@ def __init__(
self.patch_size = to_2tuple(patch_size)
if image_size is not None:
self.image_size = to_2tuple(image_size)
self.patches_resolution = tuple([s // p for s, p in zip(self.image_size, self.patch_size)])
self.num_patches = self.patches_resolution[0] * self.patches_resolution[1]
self.grid_size = tuple([s // p for s, p in zip(self.image_size, self.patch_size)])
self.num_patches = self.grid_size[0] * self.grid_size[1]
else:
self.image_size = None
self.patches_resolution = None
self.grid_size = None
self.num_patches = None

if output_fmt is not None:
Expand Down Expand Up @@ -86,8 +87,8 @@ def construct(self, x: Tensor) -> Tensor:
# FIXME look at relaxing size constraints
x = self.proj(x)
if self.flatten:
x = ops.Reshape()(x, (B, self.embed_dim, -1)) # B Ph*Pw C
x = ops.Transpose()(x, (0, 2, 1))
x = ops.reshape(x, (B, self.embed_dim, -1)) # B Ph*Pw C
x = ops.transpose(x, (0, 2, 1))
elif self.output_fmt != "NCHW":
x = nchw_to(x, self.output_fmt)
if self.norm is not None:
Expand Down
10 changes: 5 additions & 5 deletions mindcv/models/layers/pos_embed.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,11 @@


def resample_abs_pos_embed(
posemb,
new_size: List[int],
old_size: Optional[List[int]] = None,
num_prefix_tokens: int = 1,
interpolation: str = 'nearest',
posemb,
new_size: List[int],
old_size: Optional[List[int]] = None,
num_prefix_tokens: int = 1,
interpolation: str = 'nearest',
):
# sort out sizes, assume square if old size not provided
num_pos_tokens = posemb.shape[1]
Expand Down
Loading