Three-valued logic based on Kleene's strong logic of indeterminacy.
- FALSE (-1)
- UNKNOWN (0)
- TRUE (1)
NOT(A) - Logical negation
+---+----+
| A | ¬A |
|---+----|
| F | T |
| U | U |
| T | F |
+---+----+
AND(A, B) - Logical conjunction. Minimum value of (A, B)
+--------+-----------+
| | B |
| A ∧ B |---+---+---|
| | F | U | T |
|----+---+---+---+---|
| | F | F | F | F |
| A | U | F | U | U |
| | T | F | U | T |
+----+---+---+---+---+
OR(A, B) - Logical disjunction. Maximum value of (A, B)
+--------+-----------+
| | B |
| A ∨ B |---+---+---|
| | F | U | T |
|----+---+---+---+---|
| | F | F | U | T |
| A | U | U | U | T |
| | T | T | T | T |
+----+---+---+---+---+
IMP(A, B) - Logical implication. OR(NOT(A), B)
+--------+-----------+
| | B |
| A → B |---+---+---|
| | F | U | T |
|----+---+---+---+---|
| | F | T | T | T |
| A | U | U | U | T |
| | T | F | U | T |
+----+---+---+---+---+
EQV(A, B) - Logical biconditional. OR(AND(A, B), AND(NOT(A), NOT(B)))
+--------+-----------+
| | B |
| A ↔ B |---+---+---|
| | F | U | T |
|----+---+---+---+---|
| | F | T | U | F |
| A | U | U | U | U |
| | T | F | U | T |
+----+---+---+---+---+