Skip to content

Fast and accurate 3D hand pose estimation from single depth images

License

Notifications You must be signed in to change notification settings

moberweger/deep-prior

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This work is superseded by DeepPrior++

DeepPrior - Accurate and Fast 3D Hand Pose Estimation

Author: Markus Oberweger oberweger@icg.tugraz.at

Requirements:

  • OS
    • Ubuntu 14.04
    • CUDA 7
  • via Ubuntu package manager:
    • python2.7
    • python-matplotlib
    • python-scipy
    • python-pil
    • python-numpy
    • python-vtk6
    • python-pip
    • python-vtk6
  • via pip install:
    • scikit-learn
    • progressbar
    • psutil
    • theano (0.8)
  • Camera driver
    • OpenNI for Kinect
    • DepthSense SDK for Creative Senz3D.

For a description of our method see:

M. Oberweger, P. Wohlhart, and V. Lepetit. Hands Deep in Deep Learning for Hand Pose Estimation. In Computer Vision Winter Workshop, 2015.

Setup:

  • Put dataset files into ./data (e.g. ICVL dataset, or NYU dataset )
  • Goto ./src and see the main file test_realtimepipeline.py how to handle the API
  • Camera interface for the Creative Senz3D is included in ./src/util. Build them with cmake . && make.

Pretrained models:

Download pretrained models for ICVL and NYU dataset.

Datasets:

The ICVL dataset is trained for a time-of-flight camera, and the NYU dataset for a structured light camera. The annotations are different. See the papers for it.

D. Tang, H. J. Chang, A. Tejani, and T.-K. Kim. Latent Regression Forest: Structured Estimation of 3D Articulated Hand Posture. In Conference on Computer Vision and Pattern Recognition, 2014.

J. Tompson, M. Stein, Y. LeCun, and K. Perlin. Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks. ACM Transactions on Graphics, 33, 2014.

About

Fast and accurate 3D hand pose estimation from single depth images

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages