Skip to content

Commit

Permalink
feat(contours): use standard matplotlib contours for StructuredGrid m…
Browse files Browse the repository at this point in the history
…ap view plots (#1615)
  • Loading branch information
wpbonelli authored Nov 10, 2022
1 parent 60b35d5 commit 00757a4
Show file tree
Hide file tree
Showing 3 changed files with 87 additions and 75 deletions.
11 changes: 6 additions & 5 deletions autotest/test_export.py
Original file line number Diff line number Diff line change
Expand Up @@ -631,10 +631,9 @@ def test_export_contourf(tmpdir, example_data_path):

with Reader(filename) as r:
shapes = r.shapes()
if len(shapes) != 65:
raise AssertionError(
"multipolygons were skipped in contourf routine"
)
# expect 65 with standard mpl contours (structured grids), 86 with tricontours
assert len(shapes) >= 65, "multipolygons were skipped in contourf routine"



@pytest.mark.mf6
Expand Down Expand Up @@ -662,7 +661,9 @@ def test_export_contours(tmpdir, example_data_path):

with Reader(filename) as r:
shapes = r.shapes()
assert len(shapes) == 65
# expect 65 with standard mpl contours (structured grids), 86 with tricontours
assert len(shapes) >= 65



@pytest.mark.mf6
Expand Down
10 changes: 6 additions & 4 deletions autotest/test_plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -242,7 +242,7 @@ def test_cross_section_bc_UZF_3lay(example_data_path):
), f"Unexpected collection type: {type(col)}"


def test_map_view_tricontour_nan():
def test_map_view_contour(tmpdir):
arr = np.random.rand(10, 10) * 100
arr[-1, :] = np.nan
delc = np.array([10] * 10, dtype=float)
Expand Down Expand Up @@ -272,10 +272,12 @@ def test_map_view_tricontour_nan():

pmv = PlotMapView(modelgrid=grid, layer=0)
contours = pmv.contour_array(a=arr)
plt.savefig(tmpdir / "map_view_contour.png")

for ix, lev in enumerate(contours.levels):
if not np.allclose(lev, levels[ix]):
raise AssertionError("TriContour NaN catch Failed")
# if we ever revert from standard contours to tricontours, restore this nan check
# for ix, lev in enumerate(contours.levels):
# if not np.allclose(lev, levels[ix]):
# raise AssertionError("TriContour NaN catch Failed")


@pytest.mark.mf6
Expand Down
141 changes: 75 additions & 66 deletions flopy/plot/map.py
Original file line number Diff line number Diff line change
Expand Up @@ -175,56 +175,27 @@ def contour_array(self, a, masked_values=None, **kwargs):
"""
import matplotlib.tri as tri

# coerce array to ndarray of floats
a = np.copy(a)
if not isinstance(a, np.ndarray):
a = np.array(a)

a = a.astype(float)

# Use the model grid to pass back an array of the correct shape
plotarray = self.mg.get_plottable_layer_array(a, self.layer)

# work around for tri-contour ignore vmin & vmax
# necessary block for tri-contour NaN issue
if "levels" not in kwargs:
vmin = kwargs.pop("vmin", np.nanmin(plotarray))
vmax = kwargs.pop("vmax", np.nanmax(plotarray))
levels = np.linspace(vmin, vmax, 7)
kwargs["levels"] = levels

# workaround for tri-contour nan issue
# use -2**31 to allow for 32 bit int arrays
plotarray[np.isnan(plotarray)] = -(2**31)
if masked_values is None:
masked_values = [-(2**31)]
else:
masked_values = list(masked_values)
if -(2**31) not in masked_values:
masked_values.append(-(2**31))

ismasked = None
if masked_values is not None:
self._masked_values.extend(list(masked_values))

for mval in self._masked_values:
if ismasked is None:
ismasked = np.isclose(plotarray, mval)
else:
t = np.isclose(plotarray, mval)
ismasked += t
# Get vertices for the selected layer
xcentergrid = self.mg.get_xcellcenters_for_layer(self.layer)
ycentergrid = self.mg.get_ycellcenters_for_layer(self.layer)

ax = kwargs.pop("ax", self.ax)

if "colors" in kwargs.keys():
if "cmap" in kwargs.keys():
kwargs.pop("cmap")

filled = kwargs.pop("filled", False)
plot_triplot = kwargs.pop("plot_triplot", False)
tri_mask = kwargs.pop("tri_mask", False)

# Get vertices for the selected layer
xcentergrid = self.mg.get_xcellcenters_for_layer(self.layer)
ycentergrid = self.mg.get_ycellcenters_for_layer(self.layer)
if "colors" in kwargs.keys():
if "cmap" in kwargs.keys():
kwargs.pop("cmap")

if "extent" in kwargs:
extent = kwargs.pop("extent")
Expand All @@ -239,39 +210,77 @@ def contour_array(self, a, masked_values=None, **kwargs):
xcentergrid = xcentergrid[idx]
ycentergrid = ycentergrid[idx]

plotarray = plotarray.flatten()
xcentergrid = xcentergrid.flatten()
ycentergrid = ycentergrid.flatten()
triang = tri.Triangulation(xcentergrid, ycentergrid)
analyze = tri.TriAnalyzer(triang)
mask = analyze.get_flat_tri_mask(rescale=False)

# mask out holes, optional???
if tri_mask:
triangles = triang.triangles
for i in range(2):
for ix, nodes in enumerate(triangles):
neighbors = self.mg.neighbors(nodes[i], as_nodes=True)
isin = np.isin(nodes[i + 1 :], neighbors)
if not np.alltrue(isin):
mask[ix] = True

if ismasked is not None:
ismasked = ismasked.flatten()
mask2 = np.any(
np.where(ismasked[triang.triangles], True, False), axis=1
# use standard contours for structured grid, otherwise tricontours
if self.mg.grid_type == "structured":
contour_set = (
ax.contourf(xcentergrid, ycentergrid, plotarray, **kwargs)
if filled
else ax.contour(xcentergrid, ycentergrid, plotarray, **kwargs)
)
mask[mask2] = True
else:
# work around for tri-contour ignore vmin & vmax
# necessary block for tri-contour NaN issue
if "levels" not in kwargs:
vmin = kwargs.pop("vmin", np.nanmin(plotarray))
vmax = kwargs.pop("vmax", np.nanmax(plotarray))
levels = np.linspace(vmin, vmax, 7)
kwargs["levels"] = levels

# workaround for tri-contour nan issue
# use -2**31 to allow for 32 bit int arrays
plotarray[np.isnan(plotarray)] = -(2**31)
if masked_values is None:
masked_values = [-(2**31)]
else:
masked_values = list(masked_values)
if -(2**31) not in masked_values:
masked_values.append(-(2**31))

triang.set_mask(mask)
ismasked = None
if masked_values is not None:
self._masked_values.extend(list(masked_values))

if filled:
contour_set = ax.tricontourf(triang, plotarray, **kwargs)
else:
contour_set = ax.tricontour(triang, plotarray, **kwargs)
for mval in self._masked_values:
if ismasked is None:
ismasked = np.isclose(plotarray, mval)
else:
t = np.isclose(plotarray, mval)
ismasked += t

plotarray = plotarray.flatten()
xcentergrid = xcentergrid.flatten()
ycentergrid = ycentergrid.flatten()
triang = tri.Triangulation(xcentergrid, ycentergrid)
analyze = tri.TriAnalyzer(triang)
mask = analyze.get_flat_tri_mask(rescale=False)

# mask out holes, optional???
if tri_mask:
triangles = triang.triangles
for i in range(2):
for ix, nodes in enumerate(triangles):
neighbors = self.mg.neighbors(nodes[i], as_nodes=True)
isin = np.isin(nodes[i + 1 :], neighbors)
if not np.alltrue(isin):
mask[ix] = True

if ismasked is not None:
ismasked = ismasked.flatten()
mask2 = np.any(
np.where(ismasked[triang.triangles], True, False), axis=1
)
mask[mask2] = True

triang.set_mask(mask)

contour_set = (
ax.tricontourf(triang, plotarray.flatten(), **kwargs)
if filled
else ax.tricontour(triang, plotarray.flatten(), **kwargs)
)

if plot_triplot:
ax.triplot(triang, color="black", marker="o", lw=0.75)
if plot_triplot:
ax.triplot(triang, color="black", marker="o", lw=0.75)

ax.set_xlim(self.extent[0], self.extent[1])
ax.set_ylim(self.extent[2], self.extent[3])
Expand Down

0 comments on commit 00757a4

Please sign in to comment.