Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

REFACTOR-#1901: Improve performance of groupby.mean #1902

Closed

Conversation

devin-petersohn
Copy link
Collaborator

Signed-off-by: Devin Petersohn devin.petersohn@gmail.com

What do these changes do?

  • commit message follows format outlined here
  • passes flake8 modin
  • passes black --check modin
  • signed commit with git commit -s
  • Resolves #?
  • tests added and passing

Signed-off-by: Devin Petersohn <devin.petersohn@gmail.com>
@devin-petersohn devin-petersohn changed the title REAFACTOR-#1901: Improve performance of groupby.mean REFACTOR-#1901: Improve performance of groupby.mean Aug 7, 2020
@codecov
Copy link

codecov bot commented Aug 7, 2020

Codecov Report

Merging #1902 into master will decrease coverage by 13.88%.
The diff coverage is 100.00%.

Impacted file tree graph

@@             Coverage Diff             @@
##           master    #1902       +/-   ##
===========================================
- Coverage   81.52%   67.63%   -13.89%     
===========================================
  Files          79       79               
  Lines        9178     9179        +1     
===========================================
- Hits         7482     6208     -1274     
- Misses       1696     2971     +1275     
Impacted Files Coverage Δ
modin/backends/pandas/query_compiler.py 87.33% <100.00%> (-9.03%) ⬇️
modin/pandas/groupby.py 49.35% <100.00%> (-38.47%) ⬇️
modin/experimental/pandas/io_exp.py 0.00% <0.00%> (-100.00%) ⬇️
modin/experimental/pandas/__init__.py 0.00% <0.00%> (-100.00%) ⬇️
modin/engines/base/io/text/excel_reader.py 9.34% <0.00%> (-84.12%) ⬇️
modin/experimental/pandas/numpy_wrap.py 0.00% <0.00%> (-82.90%) ⬇️
...odin/data_management/functions/groupby_function.py 12.28% <0.00%> (-80.71%) ⬇️
modin/engines/base/io/text/json_reader.py 15.68% <0.00%> (-80.40%) ⬇️
...in/engines/base/io/column_stores/parquet_reader.py 17.14% <0.00%> (-80.00%) ⬇️
modin/engines/base/io/text/fwf_reader.py 6.89% <0.00%> (-79.32%) ⬇️
... and 28 more

Continue to review full report at Codecov.

Legend - Click here to learn more
Δ = absolute <relative> (impact), ø = not affected, ? = missing data
Powered by Codecov. Last update c48b4ae...a600f42. Read the comment docs.

@modin-bot
Copy link

TeamCity Python test results bot

Tests FAILed

Tests Logs
280, in <listcomp>
    for part in partitions
  File "/modin/modin/engines/base/frame/axis_partition.py", line 156, in apply
    return self._wrap_partitions(self.deploy_axis_func(*args))
  File "/modin/modin/engines/base/frame/axis_partition.py", line 202, in deploy_axis_func
    result = func(dataframe, **kwargs)
  File "/modin/modin/data_management/functions/groupby_function.py", line 134, in _reduce
    return compute_reduce(df)
  File "/modin/modin/data_management/functions/groupby_function.py", line 112, in compute_reduce
    df.groupby(by=by_part, axis=axis, **groupby_args), **reduce_args
  File "/modin/modin/backends/pandas/query_compiler.py", line 2037, in <lambda>
    lambda x: x.loc[:, "sum"].sum() / x.loc[:, "count"].sum()
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 736, in apply
    result = self._python_apply_general(f)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 755, in _python_apply_general
    keys, values, not_indexed_same=mutated or self.mutated
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 1338, in _wrap_applied_output
    return self._reindex_output(result)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 2511, in _reindex_output
    output = output.drop(labels=list(g_names), axis=1)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3997, in drop
    errors=errors,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3936, in drop
    obj = obj._drop_axis(labels, axis, level=level, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3970, in _drop_axis
    new_axis = axis.drop(labels, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 5018, in drop
    raise KeyError(f"{labels[mask]} not found in axis")
KeyError: "[('col1', '') ('col5', '')] not found in axis"
__________________ test_simple_row_groupby[False-False-by11] ___________________
[gw0] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________ test_simple_row_groupby[False-False-by14] ___________________
[gw37] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________ test_simple_row_groupby[False-False-by12] ___________________
[gw6] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________________ test_agg_exceptions[mean] ___________________________
[gw2] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/utils.py", line 607, in execute_callable
    pd_result = fn(pandas_df, **pd_kwargs)
  File "/modin/modin/pandas/test/test_groupby.py", line 66, in <lambda>
    operation, *args, **kwargs
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 928, in aggregate
    result, how = self._aggregate(func, *args, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/base.py", line 311, in _aggregate
    return self._try_aggregate_string_function(arg, *args, **kwargs), None
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/base.py", line 267, in _try_aggregate_string_function
    return f(*args, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 1226, in mean
    "mean", alt=lambda x, axis: Series(x).mean(**kwargs), **kwargs
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 994, in _cython_agg_general
    how, alt=alt, numeric_only=numeric_only, min_count=min_count
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 1095, in _cython_agg_blocks
    raise DataError("No numeric types to aggregate")
pandas.core.base.DataError: No numeric types to aggregate

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 1136, in test_agg_exceptions
    eval_aggregation(*create_test_dfs(data), operation=operation)
  File "/modin/modin/pandas/test/test_groupby.py", line 69, in eval_aggregation
    **kwargs,
  File "/modin/modin/pandas/test/utils.py", line 635, in eval_general
    operation, md_kwargs=md_kwargs, pd_kwargs=pd_kwargs, inplace=__inplace__
  File "/modin/modin/pandas/test/utils.py", line 613, in execute_callable
    repr(fn(modin_df, **md_kwargs))
  File "/opt/conda/lib/python3.7/site-packages/_pytest/python_api.py", line 744, in __exit__
    fail(self.message)
  File "/opt/conda/lib/python3.7/site-packages/_pytest/outcomes.py", line 156, in fail
    raise Failed(msg=msg, pytrace=pytrace)
Failed: DID NOT RAISE <class 'Exception'>

----------- coverage: platform linux, python 3.7.7-final-0 -----------
Coverage XML written to file coverage.xml

=========================== short test summary info ============================
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by13]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by12]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by14]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by13]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by11]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by11]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by14]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by12]
FAILED modin/pandas/test/test_groupby.py::test_agg_exceptions[mean] - Failed:...
= 9 failed, 22189 passed, 3811 skipped, 598 xfailed, 1061 xpassed, 43179 warnings in 865.41s (0:14:25) =
============================= test session starts ==============================
platform linux -- Python 3.7.7, pytest-6.0.1, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: openfiles-0.5.0, remotedata-0.3.2, cov-2.10.0, forked-1.3.0, xdist-1.34.0
collected 94 items

modin/pandas/test/test_io.py .................sX..........s............. [ 45%]
....s..............s..s.X.....s.................ss.                      [100%]

----------- coverage: platform linux, python 3.7.7-final-0 -----------
Coverage XML written to file coverage.xml


=========== 84 passed, 8 skipped, 2 xpassed, 146 warnings in 43.54s ============
Closing remaining open files:test_write_pandas.hdf...donetest_write_modin.hdf...done
============================= test session starts ==============================
platform linux -- Python 3.7.7, pytest-6.0.1, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: openfiles-0.5.0, remotedata-0.3.2, cov-2.10.0, forked-1.3.0, xdist-1.34.0
gw0 I / gw1 I / gw2 I / gw3 I / gw4 I / gw5 I / gw6 I / gw7 I / gw8 I / gw9 I / gw10 I / gw11 I / gw12 I / gw13 I / gw14 I / gw15 I / gw16 I / gw17 I / gw18 I / gw19 I / gw20 I / gw21 I / gw22 I / gw23 I / gw24 I / gw25 I / gw26 I / gw27 I / gw28 I / gw29 I / gw30 I / gw31 I / gw32 I / gw33 I / gw34 I / gw35 I / gw36 I / gw37 I / gw38 I / gw39 I / gw40 I / gw41 I / gw42 I / gw43 I / gw44 I / gw45 I / gw46 I / gw47 I
gw0 [27668] / gw1 [27668] / gw2 [27668] / gw3 [27668] / gw4 [27668] / gw5 [27668] / gw6 [27668] / gw7 [27668] / gw8 [27668] / gw9 [27668] / gw10 [27668] / gw11 [27668] / gw12 [27668] / gw13 [27668] / gw14 [27668] / gw15 [27668] / gw16 [27668] / gw17 [27668] / gw18 [27668] / gw19 [27668] / gw20 [27668] / gw21 [27668] / gw22 [27668] / gw23 [27668] / gw24 [27668] / gw25 [27668] / gw26 [27668] / gw27 [27668] / gw28 [27668] / gw29 [27668] / gw30 [27668] / gw31 [27668] / gw32 [27668] / gw33 [27668] / gw34 [27668] / gw35 [27668] / gw36 [27668] / gw37 [27668] / gw38 [27668] / gw39 [27668] / gw40 [27668] / gw41 [27668] / gw42 [27668] / gw43 [27668] / gw44 [27668] / gw45 [27668] / gw46 [27668] / gw47 [27668]

........................................................................ [  0%]
................................................................................ [  0%]
........................................................................ [  0%]
........................................................................ [  1%]
........................................................................ [  1%]
........................................................................ [  1%]
......................................................................... [  1%]
............................................................................... [  2%]
......................................................................... [  2%]
......................................................................... [  2%]
........................................................................ [  2%]
........................................................................ [  3%]
......................................................................... [  3%]
........................................................................ [  3%]
.............................s.......................................... [  3%]
......................................................................... [  4%]
......................................................................... [  4%]
.................................x...................x...................s.. [  4%]
....x................x................X.....x.X............X....x.......X. [  5%]
....X.x.x.....X......X....X...x..x......X...Xx..x.X..X..x...X.....XXX..X [  5%]
.xx....X...XXxXX....X.x..X....XXXXX...XX.x...XXXX..XxXXX...X.X.XX.xX..XX.XX [  5%]
XXX.XXXXx.XXX...XxX....XX.XX..XXXXXXXXX..XX.XXX...X..x.XXX.XX..X..XXXX.x [  5%]
.XX.XXXX.....XX...XXXX.....XXXX..x..XX.X.XX....X.XX.X..XX.....XX.X..X.X.. [  6%]
X.X.X...X.XX.X...X......X..X...X...X.......X.XXX.X......................X [  6%]
....X.......X.X.X.x.X.XX.xxXx............x.X............X.XX.X..XXXX.X.XX. [  6%]
..........X.............X.X.X.X.XXX..XX....X..........X..........X....X.X [  6%]
...XX.XX...............X..............XX...X.XX..XX....xX...X......X.......... [  7%]
.x.....X..XXX..XX...x.XX..X........X.........x........X.......x..XX...X.. [  7%]
.....s.X.......xX.................X.X.x...X......X..X......xxX......X........ [  7%]
.X..X.x.x.X....X...X....x.xXX.x....X....X..X.X...XXxX...x.X...X...Xx.XXX [  7%]
..x....X....X..X.XX..XX...Xx.X..XX.xXX.XXX..X....X.....X..Xx.X..XX..XXXX [  8%]
X...XX.XxXXXX...X...x.X....X..XX.X...XX.XXXXX...XXXXXXX....X.x..X.....X..X [  8%]
X.X...X.XXXX.x..XXXXXX.....X.XX........X..XX.X.....XXXX.x..XX.XXX.X..X.XX.X.. [  8%]
.X.......X.X.....XX.X.X..XX.X.X.X..X.XX.X..X........X.......X..X.X...X.....X. [  9%]
.X.XX.XXX.X....................X...X.....X..X.X.xXXX.X..XX.xX........... [  9%]
...Xx........X..X.X.XXXX..XxXX.XX....x..........X........X...XX..X.XX.XX [  9%]
XX.X.X...X..........X.......x.......X..XX..XX.XX.X...X..........X.......X... [  9%]
.....X..XX..XX.XXX....Xx..X......X........X..........X...XX.XXX....XX.X. [ 10%]
.......X.......X.............X.........XX.X....x............X........... [ 10%]
..............XX....X..........X.........................XX....X........ [ 10%]
.....x......................XX...X..............X....................... [ 10%]
..X..............X.........................X.........X...................... [ 11%]
................X....................................X......X........... [ 11%]
................X........X.............................X.....X.......... [ 11%]
.................X.......XX...........................X....XxX........... [ 11%]
.....................X...XX...X...x.......x....x..x..X......X..........X [ 12%]
XX..X...xX.x.....XX.XX.x.x.X......XX...X..X......Xx..X..X......Xx....... [ 12%]
......X............X..X.........X......Xx....x............X......x.Xs..x [ 12%]
X............X..X.....x.XX..XX..X..Xx....X...X..X..x.X..xxXxxXX.....XXX..x [ 12%]
..xxxx..x..x..x...x.X.xX..x.X.X......X...........x.......X..xx.X......x. [ 13%]
X.........xx....XX.X.....X..x.....X...........x.X....X..XXx...x.....x.... [ 13%]
.X...X...XxxXx...x..xxx..x........xX....xx.XxXXXX...X.X.X.X.....X.X....... [ 13%]
xxXX.X....X..................XXx...X.X..............X....xx..x.x......X. [ 14%]
.x..........x....x...x....XXx..x...X..........x.....x....x.......X...... [ 14%]
.x..X.xX.x.x.X.X.xx....Xxx....XX.........X...Xx..X..X........x.......x.. [ 14%]
..........x..x.x.............X.....x.X.X............X....XX...X.......Xx. [ 14%]
........X..........x..x.X.s........X..xxxX......s..X..x.X..x.Xx.XXs..Xx.xx [ 15%]
..xxX.xx....X.x.XsX....X.x.XXXX..XsX..XX.ssX.s....s.X...ss...s..X.sX.sss.. [ 15%]
sXs.Xsxxsss..xssxs.ss.sx.ss.Xs.xssx....ss..ss..ssss.sxssXss.sssssXsXssxXxXs. [ 15%]
.ssss.XsssXx.Xss...ssXsss.sxssss.ss.sX..ssX.sssxsssXsxs.sxs.sXXsXss.ss.ss [ 15%]
ssssss.s.sssx..ssss.sXssxsssxxssss.ssXss.ss..ssss.sssss.ss.sss.sss.sXss. [ 16%]
.ssssX.s.XsssssXssssxss.sss.s.XssXssssss.sssss.ssss..s.sXssss.ss...sssssss. [ 16%]
.ssssss.sXxsssssssssxsss.Xsss.ss..sssss.Xssss.X.ssxss..ssssssss.ssssssssss [ 16%]
.Xs.ssss.sss..sxsssss.ssss.x.s.s.sssssss.sxss.ssssss.ssss..ssss.ssssXss.s [ 16%]
ssss.s..sXssssssss.Xss.sssss..ss.ssssss.sssssxsssss.ss.sssXssssssssss.xX. [ 17%]
ssx.ssssss.ss.sssssssssssssssssssss.ss..ss.ss...sssXssssssssxssx.ssssss. [ 17%]
ss.ssssssssss.sss.s.sssssssssss.x..ssX.ssss.sssxss.ssssssssssssssss.sss. [ 17%]
sssss.sssss..sssXsssssssss.x.sssss.sssxsssssssss.ssss.sssss.sssssxxs.sssss [ 17%]
ss.sssssssss.sss.xs.s.ssss.ssXssss..ssss.ssssXss..s.sXx.s.ss.sssX.ss.s.sx [ 18%]
.s.sss.ss.sss.sssssXs.s..ss..sss.s...xss....s..sssss.ss...ssssss....s.ss. [ 18%]
.s...sss......s..sssssxs.s...ss.sss.s...ss.s.sss..........ssss..ss.ss..s [ 18%]
ss.xs....s.ss....s.s...s...s.s..ss..s....sss.ss....x..s.ss.......s...s.x [ 19%]
ss.sX.ssXsXss.....s....ss.sx......s.ss.xXsx..ssss....s..........s.ss.s.. [ 19%]
...s.s.ssss.ssXs.............ss.sss...s.....sss..x..sssss...s...........s. [ 19%]
.s.s.....ss.sss..s....s.s.s.....X..ss..s..ss...x......sss....s.s..ss..s. [ 19%]
....s.s.s..........s.s.xsxs..X.sx..s..s......ss..ss....s.......s....sX... [ 20%]
ss...ss.X.sX..x....s....sx....Xs..s.ss.ss....x.s........s.ss........ss.. [ 20%]
.......s..ss.s.s..s..........s.........s.s.s.s....s...sxs.xs.s........x.. [ 20%]
...s.Xs.s.s.x...Xs.s.....s...sX...x...ss..s.s.....x..x..s..s.s.xsx...... [ 20%]
..sss.s.........X.sxssX..s.......xss.s..s........s.Xs...ss.....s..ss.s.. [ 21%]
x.....x..sss.Xs..x.....sss.s.x.X.X...Xs.s.sxs...XX....s.....sX.....ssXs. [ 21%]
x.sx....s...xsX.ss.xss...s..x.s.x.s.Xs.s..s...s.sXX...X.ssX.ss.....s.ss.xs [ 21%]
..x.xssssx......ss.xs.....ss.Xs.x...ss..s....X...sssX....xsss..x.sxssx... [ 21%]
.x.ss..sx...s..ssX.Xs.s...sX..sss..s..X.s..sss...x.ssss.sx..s.ssss..x.Xs [ 22%]
ssss.x...sssss...X.s.ssss..sXsss.s.....ssss.ssx..sssss.....sss.s.s.sssX.s [ 22%]
.s...ss.sss.xxss.sxs.sXxs.s.s.sxss..sxss.ss..ssss.ss.Xss.ss..ss.ssss.x..ss [ 22%]
sss.s.ss.ss.ss..x.sssss.s..ss..ssssXx.ssssss....sss.ssssX.ssssss.sxX.ssss...s [ 23%]
sssx.ssssX....ssss.ss.s.s.ss..s.x.sss.s.s.s..xss..ss...ssss..s...ssxsssx [ 23%]
s..ss.s.sxsxsss..x.ssss.X.s.ssx...ss.s...sss...X.ss.s..s.s.s.x...xs.s... [ 23%]
sX...x.sX.XX..s.x..Xs....s......sx...s......X........x...xX.x..x.xx....ss [ 23%]
..Xss...s.ss...x.ss.s.s...ss...sXs...s.sXXs.s..ssx..s.s.ss.sXsss..sss..X [ 24%]
...sssx.sss..sssxs.ssssss.ssss..ssssXsssssxsss.ssssssssssss.sssss...sssss.. [ 24%]
ssss.xsssss..ssss..sss..ss.ssss..ssss...sss..s..s.s.s.s.s...sss.ss..ss.s [ 24%]
xss...............................................................xxXXX. [ 24%]
...................xX......x..Xx......x..X.x.x....x...xx....X...x..x..X. [ 25%]
....xxX.......xX..x.....XX.......XxX.......XXx.....X..X...x.X.X......XX... [ 25%]
.x...XX.......XX.x.....X.X...x..XX.......xX..x.....xX......X.xx......X.xx [ 25%]
.....x..Xx.....x..X.x....x.X..x....Xx...x....X..x...x..X..x...x..X...xx. [ 25%]
x.X....xx.xX.....xx.Xx.....xx.X...x..xxX....X..Xx.x...X..X...xxX...x...Xx [ 26%]
x.....x.X.Xx....xX..Xx....X.xX.x...X..Xx.x..X...Xx.x.X...X.x..xX..X..x..X [ 26%]
X..X..x.XX...X..xX.X..X...Xx.....X...X..x..X....X..Xx......X..Xx.....X.. [ 26%]
.x.X....X...x.X...X.....xX....X...X.x...X....X..x..X....X..x.X....X....xx [ 26%]
...X.....xx...X.....xx..X......x..xX........xXx.......X.x..x.....X...x.x [ 27%]
....xx...xx....x.x..Xx.....x..xXx.......xXxx.......xXxx......X.xxx...... [ 27%]
X.xx.x....X..xx....X.X..xx...X.X...x.x..XX....x...XxX......Xx.Xx......XXx [ 27%]
.x....X..Xx.x...X....X.X...X....XX....X....XX...X....X.X..X....X..X..X.. [ 28%]
..XX...X....X.X...x...X.X......x.XX.......xX.X.......xXX........XxX...... [ 28%]
.X.X.x......X.X..x..x...x...x..x....x..x..x......x.x.x......x.x..x.....x [ 28%]
.x..x.....x.x.....x..x..x.x.x...x...X..xx...x..X..xx....xX...xx....X...x. [ 28%]
X......xX.....xX....X..X..X.X.XXXXXXXXXXxx.x..x.xx....xx..x..x..x.x....x. [ 29%]
.x.....x.....x.......x.x....x..x.....x.......x....Xx..XX................ [ 29%]
................xxXX......X.....X...X......X.X.........XX........X.X..... [ 29%]
..X......X..X.......X..X.......X......X...X......X..X........X.X.......X [ 29%]
...X............x.............x......................................... [ 30%]
........................................................................ [ 30%]
........................................................................ [ 30%]
........................................................................ [ 30%]
............................................s................................ [ 31%]
........................................................................... [ 31%]
........................................................................ [ 31%]
........................................................................... [ 31%]
........................................................................ [ 32%]
........................................................................ [ 32%]
........................................................................... [ 32%]
........................................................................ [ 33%]
........................................................................ [ 33%]
........................................................................ [ 33%]
........................................................................ [ 33%]
........................................................................ [ 34%]
........................................................................ [ 34%]
........................................................................ [ 34%]
........................................................................ [ 34%]
...............x........X..X........X..........x..........X..X.......Xx. [ 35%]
.....xX.....X...XX...X......XX.xx.....X..XX....X.....X...X......X..X..xX [ 35%]
...x.X..X.............................sssssss...sssssssssXX.ss.X...X.... [ 35%]
......X....x........X........X.....X..XX.X..................X........... [ 35%]
.X..............x......X..........X.......X.........................X.... [ 36%]
.....X........................X.......X......X..................X....X.. [ 36%]
..X....x....X.................X......X......X......................x...X [ 36%]
......X..........................X..................................X... [ 36%]
....X............................X........X..................x.X........ [ 37%]
....X.......X...........X....X.....x.................X.................. [ 37%]
.X.......X......................X.....X....................X...X........ [ 37%]
...X........X........x....X................x....X..........X......X..... [ 37%]
.............x................x................................x........ [ 38%]
x......X...........X..................X......X........x................. [ 38%]
..x.........x...............x.................................x......... [ 38%]
x...X............X..................X.x....................x............ [ 39%]
..............x....x..................x................................. [ 39%]
.x...............x.......X.................X..................x..X...... [ 39%]
............x....................X.....X.x......X...Xx.....X............ [ 39%]
.Xx..................................x...........x.........X............ [ 40%]
........X..........x...........X..............x.......X................. [ 40%]
................X.........x.......................x..................... [ 40%]
.................X....x..............................x.................. [ 40%]
........................................................................ [ 41%]
....................x............................................x...... [ 41%]
........................................................................ [ 41%]
........................................x.................x............. [ 41%]
........................................................................ [ 42%]
............................................x........................... [ 42%]
...........X............................................................ [ 42%]
.............................................X.......................... [ 42%]
...............x........................................................ [ 43%]
.....................................................................x.. [ 43%]
............................................x........................... [ 43%]
......................................................................... [ 43%]
.......................................................x................ [ 44%]
.................................x...................................... [ 44%]
........................................................................ [ 44%]
............x............................................................ [ 45%]
........X................................................................ [ 45%]
...............X........................................................ [ 45%]
...............x........................................................ [ 45%]
........................x............................................... [ 46%]
.....................................x.................................. [ 46%]
..................................................x..................... [ 46%]
..................................................x..................... [ 46%]
...............................................................x........ [ 47%]
..........................................X............................. [ 47%]
........................................................................ [ 47%]
................................X....................................... [ 47%]
...............x........................................................ [ 48%]
........................................................................ [ 48%]
.......x...........................................................x.... [ 48%]
........................................................................ [ 48%]
........................................................................ [ 49%]
....................................x................................... [ 49%]
........................................x............................... [ 49%]
........................................................................ [ 49%]
..............................................................x.......X. [ 50%]
..........................X.................................X........... [ 50%]
........................................................................ [ 50%]
..........................................X............................. [ 50%]
......X................................................................. [ 51%]
................................................................X....... [ 51%]
..........................X...............X.............X............... [ 51%]
.......X................................X............................... [ 52%]
......................................................................... [ 52%]
.........X............................X.................................. [ 52%]
........................................................................ [ 52%]
....X............................X.........X...........................X [ 53%]
...................................X.................................X.. [ 53%]
........................................................................ [ 53%]
.............................................................X.......... [ 53%]
..............s.sss....s..sss...ssssssssssssssX.ss.ssss...ss......ssss.. [ 54%]
ss......ss..sssss..s...ssss..s..ss..ssss...s..ssssssss.ss..s..ss.......s [ 54%]
s...ss..s.sss......s..ssssss..s....sssssss.sssss.ss...sss..s.ss.....s.ss [ 54%]
....s.ss.s..ss.s.ss.sss...sss...s.sss.sss.ss.sss...ss..s..ssss.ss....ss.s [ 54%]
.ss..s..s.ss.sss.s.ssXs..ss.s.ss..s...s.s...s..ss.s.ss.ssssssss.ss.s.ss..s [ 55%]
s..s...s.s..ss..sssX.sss..sss..s.ss....sssssss.ssss.X..s.sss...s.s.ss... [ 55%]
.s.sss.s..ss.s.s.Xssss...sss...s.ss.sss.sss.s..ss.s...s....ss.ss.s.Xss.s [ 55%]
sssssssssssss.ss.sss.s...sss....ss..s.ss..s..sss..s.sss.ss.ss.ssss...s.. [ 55%]
.......s.........sX.........s...s..ss....s.....s............Xss..sss.... [ 56%]
..s.....s......sss..Xs..s..s...s..s......s..s.ss..ss.....s....s...s.s.ss [ 56%]
..ss..s.....s.s.s....ss.sss..s......s..s...sss.s.s.ss...s..ss..s..s..s.s [ 56%]
.s.s.s....s...s.ss...ss.sss..s.s..ssss...sss.s..s.s.sss.....ss...s.ssss. [ 56%]
s.ss.......ss..ssssss...ss..sss.s.s..ss.sss..s...ss.ss.ss..s...s..ssss..s [ 57%]
.s.sss.s..s.s..ss.ss.s..ssssss...s..sssss.s.s.ss.sss.sssssss.ss..s.s.sss. [ 57%]
ss..sssssss.ss...sss..ss.sssssssssssss.ssssss..s.sssssss.sssssssss..ssss [ 57%]
ss.ssssssssssssss.ss.sss.sssssssssss..sssss.ss...ss.s.s.s.ssssss..sss.ss [ 58%]
sss.s.sss.ss.sssss..ssssssssss..sssssss.ssssssssssssss.s.sssssssssssssss [ 58%]
sssssssssss.s.s..ssss.ssssssss.ssssssss..s.ss.ssssssss.ssssssssss.ssss..ss [ 58%]
sssssssssssss.sssssss.sssss..sssssssssss.s.s..sss.s.s.sss.ss.ss.sssss.sss [ 58%]
sss.sssssssssssss.s.s.ssssssssssss.s.s.ssssssss.sssssss.ssss..s.sss.ssss [ 59%]
ss.ss.s.s.ss.s.s.ssssssssss.s..............sss.ssssss.....ssssssssssssss [ 59%]
sssssssssss.ssss.ssssssssssssssss....ssssssssssssssssssssss...sssss..s.s [ 59%]
....sssss.sssssssss........sssssssssss...sssssssssss...ssssssssssssss..s [ 59%]
ssssss..s..ss.sssssss..........ssssssssssssssss....sssssssss.s.sss..s.ss [ 60%]
ssssssssssss..sssssssss.s.sssssss.s.ssssssssss..ssssss.sssssssssssssss.s [ 60%]
ssssssssss....ssssssssssssssssss..s...ssssssssssssssss...ssssssssssss.s. [ 60%]
sssssssssssssssssssssss..sssss.ssss..ssssssssssssssssssssssssssss.ssss.. [ 60%]
........ssssss.s.ssssss..sssssss...sssssssss.sssss...ssssss.s..s....s.... [ 61%]
.sssssss.ssss.s.ss.sssss.ss.sssssssssssss.sss.ssssss.ssssssssss.ssssssss [ 61%]
sssss.sssssss...ss.sssssssssssssss.s.sssss.s.ssssss.ssssssssssssssssssss [ 61%]
.ss.ssss..ssss..ssssss.sssss..sssssssssssssss.sss..ssssssssssss.ssssssss [ 61%]
ssss...sssssssssssssssssssss.sss.s.sssssssssssssssssss.s.ssssssssss...ss [ 62%]
sss.s.ssssss.s.sssssssssssss.ssss.sssssssss.sssssssssssssssssssssssss.ss [ 62%]
sssss.sss.sss.ssss..sssssssss.ssssss.ss.sssssssssss.ssssssssssssssssssss [ 62%]
.ssssssss.ssssssssssssssssssssssssssss..ssss.sss.sss.ss.ssssss.ssssssssss. [ 63%]
sssssssssssssss.sss.sss.ssssssssss.sssssssssssssssss.s.ssssssssssssssssss [ 63%]
ssssssssssssssss.sssssssssssssssss.sss.ssssssssssssssssssssssssssssssssss [ 63%]
ssss.s.ssssssss..s...sssss.ss..s.ssssssssssssssssssssssssssssssssssssssss [ 63%]
ssss...sssssssssss.sssssssssssssssssssssssssssssss.ssss.ssssssssssssssss [ 64%]
sssss.sssssssssssssssssssss.sssssssssssssssss.ssss..sssssss.ssssssssssss [ 64%]
s.sssssssssssssss..ss.sssssssssssssssss.sssssssssssssss.ssssssssssssssss [ 64%]
sss.ssssssss.sssssssssss.sssssssssssssssssssssss..ssssssssssssssssssssss [ 64%]
sssssss.sssssssssssssss..sssssssss.sssssss.sssssssssssssssssssssssssssss [ 65%]
ssssssssssssssssssssss..s.sssssssssssss..sssssssssssssssssssssssssssssss [ 65%]
ssssssssssssssssssssssssss.s.sssssssss.sssssss..sssss.ssssssssssssssssss [ 65%]
ssssssssssssssss.sss.sssssssssssssss...s.....ss.......s.s...s...s....... [ 65%]
....s..s..s.....................s...s.......s.......s........ss.....s... [ 66%]
.................s...................................................... [ 66%]
........................................................................ [ 66%]
........................................................................ [ 66%]
......................................................................... [ 67%]
........................................................................ [ 67%]
.......................................................ss..ssss.sssss... [ 67%]
.ssss..ss.sssss..ssss.........s.....ss.sssss.....ssss.ssssss.....s...ss. [ 67%]
.....ss.............................................................s... [ 68%]
........................................................................ [ 68%]
.......................................................................... [ 68%]
........................................................................ [ 69%]
.......................................................................... [ 69%]
........................................................................ [ 69%]
........................................................................ [ 69%]
......................................................................... [ 70%]
.......................................................................... [ 70%]
........................................................................ [ 70%]
........................................................................ [ 70%]
........................................................................ [ 71%]
......................................................................... [ 71%]
........................................................................ [ 71%]
........................................................................ [ 71%]
............................................................................. [ 72%]
........................................................................ [ 72%]
........................................................................ [ 72%]
........................................................................ [ 72%]
........................................................................ [ 73%]
........................................................................ [ 73%]
........................................................................ [ 73%]
........................................................................ [ 74%]
........................................................................ [ 74%]
........................................................................ [ 74%]
........................................................................ [ 74%]
........................................................................ [ 75%]
......................................................................... [ 75%]
........................................................................ [ 75%]
........................................................................ [ 75%]
........................................................................ [ 76%]
........................................................................ [ 76%]
........................................................................ [ 76%]
........................................................................ [ 76%]
........................................................................ [ 77%]
......................................................................... [ 77%]
........................................................................ [ 77%]
........................................................................ [ 77%]
........................................................................ [ 78%]
........................................................................ [ 78%]
........................................................................ [ 78%]
........................................................................ [ 78%]
........................................................................ [ 79%]
........................................................................ [ 79%]
........................................................................ [ 79%]
........................................................................ [ 79%]
........................................................................ [ 80%]
........................................................................ [ 80%]
......................................................................... [ 80%]
......................................................................... [ 81%]
........................................................................ [ 81%]
........................................................................ [ 81%]
........................................................................ [ 81%]
........................................................................ [ 82%]
........................................................................ [ 82%]
........................................................................ [ 82%]
........................................................................ [ 82%]
........................................................................ [ 83%]
........................................................................ [ 83%]
........................................................................ [ 83%]
........................................................................ [ 83%]
........................................................................ [ 84%]
........................................................................ [ 84%]
........................................................................ [ 84%]
........................................................................ [ 84%]
........................................................................... [ 85%]
........................................................................ [ 85%]
......................................................................... [ 85%]
........................................................................ [ 86%]
........................................................................ [ 86%]
........................................................................ [ 86%]
........................................................................ [ 86%]
........................................................................ [ 87%]
......................................................................... [ 87%]
........................................................................ [ 87%]
........................................................................ [ 87%]
........................................................................ [ 88%]
......................................................................... [ 88%]
........................................................................ [ 88%]
........................................................................ [ 88%]
........................................................................ [ 89%]
........................................................................ [ 89%]
........................................................................ [ 89%]
........................................................................ [ 89%]
........................................................................ [ 90%]
........................................................................ [ 90%]
........................................................................ [ 90%]
........................................................................ [ 90%]
........................................................................ [ 91%]
........................................................................ [ 91%]
........................................................................ [ 91%]
........................................................................ [ 91%]
......................................................................... [ 92%]
.....................ss.sss............................................. [ 92%]
...........................s.....................x.........x............ [ 92%]
.....................X.............X...x.........x......X..........X.... [ 93%]
........................................................................ [ 93%]
................s............................ss..sss.ss..sssssss.sssssss [ 93%]
.ssss.ssss..sssssssss.ss.ssssssss.sssssss............................... [ 93%]
........................................................................ [ 94%]
........................................................................ [ 94%]
......................................................................... [ 94%]
........................................................................ [ 94%]
........................................................................ [ 95%]
........................................................................ [ 95%]
........................................................................ [ 95%]
........................................................................ [ 95%]
........................................................................ [ 96%]
........................................................................ [ 96%]
...........................................................x.FF......... [ 96%]
F....x..x.xx......x.FFFx.....x.......x.x.x........x............xFx...... [ 96%]
....F....x.........x........................F........................... [ 97%]
........................................................................ [ 97%]
........................................................................ [ 97%]
........................................................................ [ 97%]
........................................................................ [ 98%]
........................................................................ [ 98%]
........................................................................ [ 98%]
........................................................................ [ 99%]
........................................................................ [ 99%]
........................................................................ [ 99%]
........................................................................ [ 99%]
....................................................                     [100%]
=================================== FAILURES ===================================
___________________ test_simple_row_groupby[True-False-by13] ___________________
[gw33] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
___________________ test_simple_row_groupby[True-False-by12] ___________________
[gw25] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
___________________ test_simple_row_groupby[True-False-by14] ___________________
[gw11] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/groupby.py", line 188, in mean
    **kwargs,
  File "/modin/modin/pandas/groupby.py", line 634, in _wrap_aggregation
    drop=self._drop,
  File "/modin/modin/data_management/functions/groupby_function.py", line 142, in caller
    axis, by._modin_frame, _map, _reduce
  File "/modin/modin/engines/base/frame/data.py", line 1700, in groupby_reduce
    axis, self._partitions, by._partitions, map_func, reduce_func
  File "/modin/modin/engines/base/frame/partition_manager.py", line 97, in groupby_reduce
    return cls.map_axis_partitions(axis, new_partitions, reduce_func)
  File "/modin/modin/engines/base/frame/partition_manager.py", line 280, in map_axis_partitions
    for part in partitions
  File "/modin/modin/engines/base/frame/partition_manager.py", line 280, in <listcomp>
    for part in partitions
  File "/modin/modin/engines/base/frame/axis_partition.py", line 156, in apply
    return self._wrap_partitions(self.deploy_axis_func(*args))
  File "/modin/modin/engines/base/frame/axis_partition.py", line 202, in deploy_axis_func
    result = func(dataframe, **kwargs)
  File "/modin/modin/data_management/functions/groupby_function.py", line 134, in _reduce
    return compute_reduce(df)
  File "/modin/modin/data_management/functions/groupby_function.py", line 112, in compute_reduce
    df.groupby(by=by_part, axis=axis, **groupby_args), **reduce_args
  File "/modin/modin/backends/pandas/query_compiler.py", line 2037, in <lambda>
    lambda x: x.loc[:, "sum"].sum() / x.loc[:, "count"].sum()
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 736, in apply
    result = self._python_apply_general(f)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 755, in _python_apply_general
    keys, values, not_indexed_same=mutated or self.mutated
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 1338, in _wrap_applied_output
    return self._reindex_output(result)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 2511, in _reindex_output
    output = output.drop(labels=list(g_names), axis=1)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3997, in drop
    errors=errors,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3936, in drop
    obj = obj._drop_axis(labels, axis, level=level, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3970, in _drop_axis
    new_axis = axis.drop(labels, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 5018, in drop
    raise KeyError(f"{labels[mask]} not found in axis")
KeyError: "[('col5', '') ('col4', '') ('col1', '')] not found in axis"
__________________ test_simple_row_groupby[False-False-by13] ___________________
[gw11] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
___________________ test_simple_row_groupby[True-False-by11] ___________________
[gw1] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/groupby.py", line 188, in mean
    **kwargs,
  File "/modin/modin/pandas/groupby.py", line 634, in _wrap_aggregation
    drop=self._drop,
  File "/modin/modin/data_management/functions/groupby_function.py", line 142, in caller
    axis, by._modin_frame, _map, _reduce
  File "/modin/modin/engines/base/frame/data.py", line 1700, in groupby_reduce
    axis, self._partitions, by._partitions, map_func, reduce_func
  File "/modin/modin/engines/base/frame/partition_manager.py", line 97, in groupby_reduce
    return cls.map_axis_partitions(axis, new_partitions, reduce_func)
  File "/modin/modin/engines/base/frame/partition_manager.py", line 280, in map_axis_partitions
    for part in partitions
  File "/modin/modin/engines/base/frame/partition_manager.py", line 280, in <listcomp>
    for part in partitions
  File "/modin/modin/engines/base/frame/axis_partition.py", line 156, in apply
    return self._wrap_partitions(self.deploy_axis_func(*args))
  File "/modin/modin/engines/base/frame/axis_partition.py", line 202, in deploy_axis_func
    result = func(dataframe, **kwargs)
  File "/modin/modin/data_management/functions/groupby_function.py", line 134, in _reduce
    return compute_reduce(df)
  File "/modin/modin/data_management/functions/groupby_function.py", line 112, in compute_reduce
    df.groupby(by=by_part, axis=axis, **groupby_args), **reduce_args
  File "/modin/modin/backends/pandas/query_compiler.py", line 2037, in <lambda>
    lambda x: x.loc[:, "sum"].sum() / x.loc[:, "count"].sum()
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 736, in apply
    result = self._python_apply_general(f)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 755, in _python_apply_general
    keys, values, not_indexed_same=mutated or self.mutated
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 1338, in _wrap_applied_output
    return self._reindex_output(result)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 2511, in _reindex_output
    output = output.drop(labels=list(g_names), axis=1)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3997, in drop
    errors=errors,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3936, in drop
    obj = obj._drop_axis(labels, axis, level=level, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3970, in _drop_axis
    new_axis = axis.drop(labels, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 5018, in drop
    raise KeyError(f"{labels[mask]} not found in axis")
KeyError: "[('col1', '') ('col5', '')] not found in axis"
__________________ test_simple_row_groupby[False-False-by11] ___________________
[gw0] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________ test_simple_row_groupby[False-False-by14] ___________________
[gw37] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________ test_simple_row_groupby[False-False-by12] ___________________
[gw6] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________________ test_agg_exceptions[mean] ___________________________
[gw2] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/utils.py", line 607, in execute_callable
    pd_result = fn(pandas_df, **pd_kwargs)
  File "/modin/modin/pandas/test/test_groupby.py", line 66, in <lambda>
    operation, *args, **kwargs
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 928, in aggregate
    result, how = self._aggregate(func, *args, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/base.py", line 311, in _aggregate
    return self._try_aggregate_string_function(arg, *args, **kwargs), None
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/base.py", line 267, in _try_aggregate_string_function
    return f(*args, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 1226, in mean
    "mean", alt=lambda x, axis: Series(x).mean(**kwargs), **kwargs
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 994, in _cython_agg_general
    how, alt=alt, numeric_only=numeric_only, min_count=min_count
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 1095, in _cython_agg_blocks
    raise DataError("No numeric types to aggregate")
pandas.core.base.DataError: No numeric types to aggregate

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 1136, in test_agg_exceptions
    eval_aggregation(*create_test_dfs(data), operation=operation)
  File "/modin/modin/pandas/test/test_groupby.py", line 69, in eval_aggregation
    **kwargs,
  File "/modin/modin/pandas/test/utils.py", line 635, in eval_general
    operation, md_kwargs=md_kwargs, pd_kwargs=pd_kwargs, inplace=__inplace__
  File "/modin/modin/pandas/test/utils.py", line 613, in execute_callable
    repr(fn(modin_df, **md_kwargs))
  File "/opt/conda/lib/python3.7/site-packages/_pytest/python_api.py", line 744, in __exit__
    fail(self.message)
  File "/opt/conda/lib/python3.7/site-packages/_pytest/outcomes.py", line 156, in fail
    raise Failed(msg=msg, pytrace=pytrace)
Failed: DID NOT RAISE <class 'Exception'>

----------- coverage: platform linux, python 3.7.7-final-0 -----------
Coverage XML written to file coverage.xml

=========================== short test summary info ============================
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by13]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by12]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by14]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by13]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by11]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by11]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by14]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by12]
FAILED modin/pandas/test/test_groupby.py::test_agg_exceptions[mean] - Failed:...
= 9 failed, 22189 passed, 3811 skipped, 598 xfailed, 1061 xpassed, 43179 warnings in 865.41s (0:14:25) =


<b>Remaining output truncated<b>


@modin-bot
Copy link

TeamCity Dask test results bot

Tests FAILed

Tests Logs
__________
[gw39] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________ test_simple_row_groupby[False-False-by14] ___________________
[gw12] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________ test_simple_row_groupby[False-False-by12] ___________________
[gw16] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________________ test_agg_exceptions[mean] ___________________________
[gw28] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/utils.py", line 607, in execute_callable
    pd_result = fn(pandas_df, **pd_kwargs)
  File "/modin/modin/pandas/test/test_groupby.py", line 66, in <lambda>
    operation, *args, **kwargs
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 928, in aggregate
    result, how = self._aggregate(func, *args, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/base.py", line 311, in _aggregate
    return self._try_aggregate_string_function(arg, *args, **kwargs), None
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/base.py", line 267, in _try_aggregate_string_function
    return f(*args, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 1226, in mean
    "mean", alt=lambda x, axis: Series(x).mean(**kwargs), **kwargs
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 994, in _cython_agg_general
    how, alt=alt, numeric_only=numeric_only, min_count=min_count
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 1095, in _cython_agg_blocks
    raise DataError("No numeric types to aggregate")
pandas.core.base.DataError: No numeric types to aggregate

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 1136, in test_agg_exceptions
    eval_aggregation(*create_test_dfs(data), operation=operation)
  File "/modin/modin/pandas/test/test_groupby.py", line 69, in eval_aggregation
    **kwargs,
  File "/modin/modin/pandas/test/utils.py", line 635, in eval_general
    operation, md_kwargs=md_kwargs, pd_kwargs=pd_kwargs, inplace=__inplace__
  File "/modin/modin/pandas/test/utils.py", line 613, in execute_callable
    repr(fn(modin_df, **md_kwargs))
  File "/opt/conda/lib/python3.7/site-packages/_pytest/python_api.py", line 744, in __exit__
    fail(self.message)
  File "/opt/conda/lib/python3.7/site-packages/_pytest/outcomes.py", line 156, in fail
    raise Failed(msg=msg, pytrace=pytrace)
Failed: DID NOT RAISE <class 'Exception'>

----------- coverage: platform linux, python 3.7.7-final-0 -----------
Coverage XML written to file coverage.xml

=========================== short test summary info ============================
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by12]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by11]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by14]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by13]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by13]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by11]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by14]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by12]
FAILED modin/pandas/test/test_groupby.py::test_agg_exceptions[mean] - Failed:...
= 9 failed, 22189 passed, 3811 skipped, 598 xfailed, 1061 xpassed, 42694 warnings in 1352.92s (0:22:32) =
============================= test session starts ==============================
platform linux -- Python 3.7.7, pytest-6.0.1, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: openfiles-0.5.0, remotedata-0.3.2, cov-2.10.0, forked-1.3.0, xdist-1.34.0
collected 94 items

modin/pandas/test/test_io.py .................sx..........s............. [ 45%]
...................s..s.X.....s.................ss.                      [100%]

----------- coverage: platform linux, python 3.7.7-final-0 -----------
Coverage XML written to file coverage.xml


= 85 passed, 7 skipped, 1 xfailed, 1 xpassed, 114 warnings in 65.10s (0:01:05) =
Closing remaining open files:test_write_pandas.hdf...donetest_write_modin.hdf...done
============================= test session starts ==============================
platform linux -- Python 3.7.7, pytest-6.0.1, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: openfiles-0.5.0, remotedata-0.3.2, cov-2.10.0, forked-1.3.0, xdist-1.34.0
gw0 I / gw1 I / gw2 I / gw3 I / gw4 I / gw5 I / gw6 I / gw7 I / gw8 I / gw9 I / gw10 I / gw11 I / gw12 I / gw13 I / gw14 I / gw15 I / gw16 I / gw17 I / gw18 I / gw19 I / gw20 I / gw21 I / gw22 I / gw23 I / gw24 I / gw25 I / gw26 I / gw27 I / gw28 I / gw29 I / gw30 I / gw31 I / gw32 I / gw33 I / gw34 I / gw35 I / gw36 I / gw37 I / gw38 I / gw39 I / gw40 I / gw41 I / gw42 I / gw43 I / gw44 I / gw45 I / gw46 I / gw47 I
gw0 [27668] / gw1 [27668] / gw2 [27668] / gw3 [27668] / gw4 [27668] / gw5 [27668] / gw6 [27668] / gw7 [27668] / gw8 [27668] / gw9 [27668] / gw10 [27668] / gw11 [27668] / gw12 [27668] / gw13 [27668] / gw14 [27668] / gw15 [27668] / gw16 [27668] / gw17 [27668] / gw18 [27668] / gw19 [27668] / gw20 [27668] / gw21 [27668] / gw22 [27668] / gw23 [27668] / gw24 [27668] / gw25 [27668] / gw26 [27668] / gw27 [27668] / gw28 [27668] / gw29 [27668] / gw30 [27668] / gw31 [27668] / gw32 [27668] / gw33 [27668] / gw34 [27668] / gw35 [27668] / gw36 [27668] / gw37 [27668] / gw38 [27668] / gw39 [27668] / gw40 [27668] / gw41 [27668] / gw42 [27668] / gw43 [27668] / gw44 [27668] / gw45 [27668] / gw46 [27668] / gw47 [27668]

........................................................................ [  0%]
........................................................................ [  0%]
........................................................................ [  0%]
........................................................................ [  1%]
........................................................................ [  1%]
........................................................................ [  1%]
........................................................................ [  1%]
........................................................................ [  2%]
......................................................................... [  2%]
......................................................................... [  2%]
........................................................................ [  2%]
........................................................................ [  3%]
..........................................................s............. [  3%]
........................................................................ [  3%]
........................................................................ [  3%]
....x..................x...............................X................. [  4%]
.............................X...............................s.......... [  4%]
..........x....X...........x........X.............................X..x.. [  4%]
...............xx.......x.xx.......x....X...x......x.x.X...X.....X..X... [  4%]
X.X....X..X..XXXX....XXXX.XX..XX....X.XX...X...X...x..X.......X.....X.XX [  5%]
.....X.XXX..x.X.XXx...X.XX......XX.X.X.X....X.X.X..x.XX.XX.X..X...X....X [  5%]
......XXX..xXX.x...XXX...X..XXX.X...XX...X.XX....XX....X.xxX..XX...X..XX [  5%]
...XX....XX........XX..X.X....X....X...X.....X......XX....X.XX.XX...X... [  5%]
xX..XX.....XX..X.X..X.....X..X.X......X...X.X..XXx..X.....XX........XX.. [  6%]
....XX.......X...XX...X.X.XX...XX...XX...XX...X...XX..X.....XX.X..X...X. [  6%]
.....XX...X......X.......X.........X.....X..X.....X..............X....XX [  6%]
...X...X.....X........X.....X..X.............X...........X.xX...X.XXX.X. [  7%]
.XX...X.X.XxX...X.X....X.X.XX...X..........................x......X..X.. [  7%]
.....X.....xXXX........XXX.XX...X.....x..............x.................x [  7%]
.X...X.x..X....XX..X.......X.XXX.....XXX...X.XX.X...XX...X.XX..X...X..X. [  7%]
XXX....X....X....X....X...X...X......X.......X.X......X.....x.........X. [  8%]
...........X.X..............X........X..........X..XX.X......X...X....x. [  8%]
.X.......X....x..X.......x...x...X..x.....xX..x......................X.. [  8%]
......X..X..X.X..xs..X.x.....X...x.........x.X........X....XX....XX.X..x [  8%]
x.XX.....xXXXX...x....Xx....x...x....X..........XXX..X..XX......XX...x.Xx [  9%]
.X..X..XXX.X..X.x.X.X.X..X...x.X........X..X....X....XX......X........XX [  9%]
...X...X.............XxXXX..xX..x.....X.X.X...XX.X.X....x.X..X.Xx..Xx... [  9%]
..XX.X.X......X.X.....X.XX..X.x.XX..X.......X.....XX..x..X....Xx....x.x. [  9%]
.......X......X..X...X.X.........x......x.X.........x....Xx....X........ [ 10%]
.........X..X..XX.....x...s.ssXsxssss.Xs.s..sssss..ssXsss.ssXsXss.Xss.XX [ 10%]
.....X..x....X.x..s.ss.sss..sss.ssXsss.s.ss.sss.s..ssssss....xx....X.... [ 10%]
x........x........X.....Xx.....XX.......Xx..X...xX.xX..X...X...x...Xx.X. [ 10%]
X.X....XxX.....XXxsssss.s.sxs.sssXssXsssss.sssssXs...X.ss....X.X...x..X. [ 11%]
.....X........X.Xx.s.X.sss.XXssss.ss.ss.ssXssss..ss.sssssss..ssss.sssss. [ 11%]
sXs..sssss.ss.x.ssss.X.ssX.s..X...Xsssss.sX.sss.ss.sssXsss.sxs.Xsssss.sX [ 11%]
s...X.x...X..X...X..X.X..X.XX...X......X.X.X.....X........X........XXx.. [ 11%]
.....XX...X.XX.X....X...X.xX.....XXX......XXX......X..X.s.sss.sss.s..s.s [ 12%]
ss..X.sssXss.ss.s.sss..sssx........X...x..x...X.XX.................X..X. [ 12%]
sssss..sss..ss....ss.ss..ssss..ssssss.s.....ss...X......Xx.....X......X.. [ 12%]
.X.X....x..X.X.X.xX...X..sss.sXs.s.sXssss.s.ssss.ss.ssss.ssss.......X.... [ 13%]
.......X.X......x...X.........................x.......X.........x......x [ 13%]
.......X..........X...x...........X..Xx...Xx..........X.x.X.ssssssssss.s [ 13%]
s.s.ss.sXsssssssss..s.X..X.X....X...X..X..X......X..............X...x... [ 13%]
.XX..........X.....X.X......X..x...X.........x.......Xx.................. [ 14%]
.x....XX...x.X.Xs.ss.sX.ssss.sss.ss.ss.s..sss.sXXss.ss.ss.x...X..X...XX. [ 14%]
................XX....X..Xx........Xs..x......X.......XX....X.XX........ [ 14%]
.X........XX.........Xx......X.....X......X....X......x...x..X.......... [ 14%]
...xx..X.X.ssss..ss.sXs..s.s.xsxssssssssXssssssxs...........x......X...X [ 15%]
XX...xx.......X.........X..........XxX..x.......x..X....x...X.X.XX..X.X. [ 15%]
...X..x.sss.ss..s..ssss.sXssXs.ss.s.ssXs.ss.sss....xX.x.X...ss..xxx..X.. [ 15%]
.X.x......XX............xXx.....XX...X.XXXXXX.XXX.x..X...XX.X...X...X.X. [ 15%]
...X..........xX..........x.xx...X..x...X.s.s.s.ssXXs.ss.sss.xss.....sss [ 16%]
ssX...sssss.ss...s....X.....x........x......x........Xx.x.x.X........x.. [ 16%]
x.....x..X..X.......X...xXxx......X.......xxx...........X...xxX....Xx... [ 16%]
x.............x.....xxX....X..X..X..X.....x..X.X....X..x.X......X..XXx.. [ 16%]
..x.X.x.........xXXsssXs.Xss.s....sssx...sssss....sssx.sssss.......sss.. [ 17%]
X.......X....X....X.xX.xX...xX............x..X.....xx....xX...x.XxX..sss [ 17%]
.Xssss..s.ss..s.s.sss.s.ss..ssssss..ssX.........XX.......xx.Xx.Xss..xs.s [ 17%]
sss.....ss.sss.sss.ssxsXss...sss.ss..s........xx.....x..x........x...... [ 17%]
......X......Xsss.ss.ssxs.xss..sss...sss.ssss.s..s.sssss.Xxss..s.sXs.s.s [ 18%]
s.s...sssss.ssss.s.s..sss.ss....s......x...X.sss..s.ss.s..ssss.xss..s.ss [ 18%]
s.ssss.ss.sss..x..........Xx...x....x..Xxs.sssss...ss.ssssss...sss..sss. [ 18%]
..ss..xssss.......X..ss.xsss.s.sss..ss.s...ssXs..ssss..xss.ss.s....ssx... [ 19%]
x..x......X....x...x.......x......X.....xX....X......x.x.x.X......X..... [ 19%]
.X.....X.....X......x.X..X.X......X.....X........X.....XX.....x..X.....X.. [ 19%]
...X.X......xss..ssss..xX.sssX..ss.s.ssss.sss..s.ss..sss..XXs..........X [ 19%]
X.x.X.x.........XX....x......X.Xs.sss.sX..s.sss.s.sX.s.sss.ss.s.Xssss..s. [ 20%]
sxss......xx.X.......................X.....x........x.x...X...ss.ss.ssss [ 20%]
ss...ssssss.s.s.ss..ss..ss.ss................xxx.X..............x.s.s.ss [ 20%]
...s.sss.s.s.ss.s.sss.s.s.s.ss..sss..xXsss..xX........................... [ 20%]
....x.x.....xx.....x.............x...........X.......x.X........XX...... [ 21%]
.....X......x....X...........xX.X.X............X.......x...X..........X. [ 21%]
..X.......x...X........X........x...X..X.......................x........ [ 21%]
.xx.....X............................x.x......X...X....................x [ 21%]
...xXx......Xssss.s.s.sss..s.......sss.ssss.s..ss.ss.ss.s.ss.x...x.....x [ 22%]
............x................X.........x...X..X........X...........X.... [ 22%]
.x...X...X..x.xX...X.............Xx..........xX.....XX..X..X........xX.. [ 22%]
.........Xx.........xx..XX......X........x..........................x... [ 22%]
........x............................X.......x.......xx.Xss..sss.s.ss... [ 23%]
sss..sssss.s.ss.s.ss..ss...ss........x...x....x........x.x.x...X.Xx.x.Xx [ 23%]
.....x....................x..x.x...xx....Xx.........X.x......XX........x [ 23%]
X...x...X............X..X.......X...xX..X.x..X............X.....x....X.x [ 23%]
....XXx.......X..X.x.....X..X.X.........X....X.....x.........x........... [ 24%]
.x...x......x.xX.........x..................x....x..x...Xxss.ss.sss.ss.. [ 24%]
ssss.ssx.s..ssssss.s.xsss...X..xsss.ss.sssssxsssss.sxssss.ssssss.Xssx... [ 24%]
sssss.s.xs.s..sss.Xsss...sss...sss..ssss.X.....x.....x.......x.......... [ 25%]
......xx.X.x......x............................xxxXXX..XXX.......xXx.x.. [ 25%]
Xs.X.....ss...x........ss.sssssssssssssssssssss.....x................... [ 25%]
............xXs....s...Xs..s..X.s....sX..s.s...s.X.s.s.xs..s.sXsssssssss [ 25%]
s.ss.X.......X...X....X...........Xx.........X........X.....X.......X... [ 26%]
....x.ss.ss.sssXsss.sXsXsssxs..sss..ss..ss.s.s.x...s.........X...X...x.. [ 26%]
............x.......X........x....x..................................... [ 26%]
..x.x.................X.................................x.........X...... [ 26%]
..................................x.................X.x.ss..s.....ssssss [ 27%]
s..X......s.....ssssssssssss..ss...s..............x............x........ [ 27%]
......x....................x..X.xX......x................x.............. [ 27%]
........x.........................X..........X..............X........... [ 27%]
........................................................................ [ 28%]
...........X...........x.....Xx....................xsssss.ssss.sssssssss [ 28%]
sss.ss.sss....X..................X......................x...x..X........ [ 28%]
.....X.....................................x.............x...s....X..... [ 28%]
...................................X...........................x.......x [ 29%]
x......X.........................................................X.X.... [ 29%]
.XX.......................x.............X...............X...X........... [ 29%]
..x...........xX.......x...X...........................x.....Xsssss.sss.s [ 29%]
sss..ssssss.ssssss.ss...............X................x.....X...X........ [ 30%]
.X.x.........xssss.s.ss.ssssssssss.sss.ssssss.s......................... [ 30%]
.........X..............X......X...X..x...x..................X.......... [ 30%]
.........X.........x...x..X...X........X..........xX.X..X....x.X........ [ 31%]
x.x..x..ssssss.ss.ssss.sssssss.sssXsssss.......X...........x.XX......x.x [ 31%]
..XxXx..X....X.........X...............X..x.........xXsxssXssss.ssssxsss [ 31%]
sssss.ssssss.ss.xX......x...................x...X....X....xXXX.ss..sssss [ 31%]
sss.sssssss.s..sssssssss..........x...X.........Xx......xss.sss.sssssXss [ 32%]
ss.ss.ssssss.sss.s..X.ssssssssxsssss.sssssssssssss.s.....X............xx [ 32%]
......x.......X..................x............x....x.....X.s.sssss.sxsss [ 32%]
s.sssss.ssssssssss..........x.....X.......x.x........................... [ 32%]
......sx..x.x................................................x....X..... [ 33%]
..........x.....X..............X..............xss.s.s.ss.sssssssss.sss... [ 33%]
s.ssssss..s...X.......................................................X. [ 33%]
...............................X.......................Xx.............x.. [ 33%]
.................x.....x..................x.................x.xx........ [ 34%]
.................x....x................xx.....................x......... [ 34%]
..............xx.........x..x...X.........x............xx............... [ 34%]
..xx...............x.x........x....x.X.xX.X....X...X....X....X.x......X. [ 34%]
.X......X...X........X.....X..X...X.X.......X..x..X....x.x...x..x...X... [ 35%]
................x.........X....................x...................x.xx. [ 35%]
..X.....X.......xxss.ss.ssx.ssssssss.ssXss.ss.ss.ssss.............xx.... [ 35%]
............x........Xx....xX...x.....x..x..x...X..xs.ss.ss.ss.s.sssss..s [ 35%]
ssss.ss.sssss..s.x.x....................x.....x...xX..........x..x.x...x [ 36%]
..xssss.ss..ss.ss.sssss.ss.ssssss.sss..x....x...x.........x..x..x...x... [ 36%]
...x........xx....X..X...x.x..X..xX..x....X......x.XxX...XX..xX.X..XX... [ 36%]
...XX....xXX...XX..XX...x...X....Xx...X....X.x.X.X.....xX..X...x.......x [ 37%]
....xx.........x.....xx.x.x....X.....Xx....X...x..X....X.....X..x.X....X [ 37%]
...x..X...X......X....xx...X.XX..x.....x.....x..x.............x..x....x. [ 37%]
....x..x.........x...xx..........X................x.X...xx.....x.....x.. [ 37%]
...x....x....xx....XxX...X......Xx...XX....XX.....XXX.XX..XX...XXX..X..X [ 38%]
.XX..X..X.XX..XX..X.X..X..x............x...x............................ [ 38%]
...................x.....................................x....x......... [ 38%]
...................................x.................................... [ 38%]
............x..x......................................................X. [ 39%]
....................................x.........X......................... [ 39%]
..............X..............x.......................................... [ 39%]
......x..........................................................x..x.... [ 39%]
.............................................x..................x....... [ 40%]
...........................x...............X............................ [ 40%]
.........................x................X..............X.............. [ 40%]
...................X..x.............X..............................x.... [ 40%]
...x..................x..............x.......x.........................x [ 41%]
................................x......x.............................X.. [ 41%]
.................x..........................X........................... [ 41%]
........x.....................X......X..............X................... [ 41%]
..X............x...................................X.................... [ 42%]
....X........x.............................................x..X......... [ 42%]
...............X...........X.......................X.................... [ 42%]
...x.........X......................X.......................x........... [ 43%]
.................X......s.ssssssss..s.ssss.sss.s.............X......x... [ 43%]
.....................................X.....X...........X............X... [ 43%]
..............X............X..........X.................X.............x.. [ 43%]
...........................X...X...............X.X.x............X.....X. [ 44%]
..............X...X....X..............X......X..X............X..X....... [ 44%]
..........X......X............X.X......X..........X.X.....X.............. [ 44%]
.......X.......X...............XX..............X.....X.................. [ 44%]
X........X.............X..........X.....X....................X.......... [ 45%]
X................................X..................................X... [ 45%]
................................X....................................... [ 45%]
.......................X..................................X............. [ 45%]
..................................................X..................... [ 46%]
...........X......................X.....................X................ [ 46%]
............X...................X........................................ [ 46%]
.............................X...........................X.............. [ 46%]
...................................................X..X..............X.. [ 47%]
....X..X............X.....X...........X.............X................... [ 47%]
........................................................................ [ 47%]
........................................................................ [ 47%]
........................................................................ [ 48%]
........................................................................ [ 48%]
........................................................................ [ 48%]
........................................................................ [ 49%]
........................................................................ [ 49%]
........................................................................ [ 49%]
........................................................................ [ 49%]
........................................................................ [ 50%]
........................................................................ [ 50%]
........................................................................ [ 50%]
........................................................................ [ 50%]
........................................................................ [ 51%]
........................................................................ [ 51%]
........................................................................ [ 51%]
........................................................................ [ 51%]
........................................................................ [ 52%]
......................................................................... [ 52%]
........................................................................ [ 52%]
........................................................................ [ 52%]
........................................................................ [ 53%]
........................................................................ [ 53%]
...................................................................ss.ss [ 53%]
ss.ssssss.ssssssssss.sss.s.s.ss.ss.s.sssssssssssssssssssssssssssssss.s.s [ 53%]
s.s.ssssssssssssssssssss.sss.ssssssssss.s.ss.ssssssssss.ssssssssssss.sss [ 54%]
ssssss.sssssssss.ssss.s.ssssss.ssssssssssssssssss.ssss.s.sssssss...sss.s [ 54%]
sssss.sssssss.sssssssssss.ssssss.ssssssss.ssssssssss.ssss.ssssssssssssss [ 54%]
sssss.sssss.sssssssssssssss.sssssss.ss.sssss.s.sssssss..ss.ss..sssss..ss [ 54%]
s.s.sssssss.ss.ss.ss.ssssss.ssss.sssss..sssssssssssssssssss.ssssssssssss [ 55%]
s.ss.sssssssssssssss.ssssss.ssss.sssssss.s.sssss.ssssssssssssss..ssss.s. [ 55%]
.sssss.ssss.ss.sssssssssssssssss.sssssssss.sssssssssss.ss.s.sssss..sssss [ 55%]
ss.sssssss.ssssssssssssssssssss.sssss.ss.ssssssss.sssss.ssssss.sssssssss [ 56%]
sss.sssss.ss.sssssssss.ssssssssssss..sssssssssssssssss.sss.ssss.ssssssss [ 56%]
sssss.sssssssssss.ss.sssssss.ssss.ss.sssssss.ssssssss.ssssssssss.sss.sss [ 56%]
sssssssssssssssssss.s.ssssssssssssssssssssssssssssssssssssssssssssssssss [ 56%]
sssssssssssssss.ss.sssssssssssssssssssss.sssssssssssssssssssssssssssssss [ 57%]
sssssssssssssssssss.s.ssssssssssss.sssssssss.sssssssssss.sssssss.sss.sss [ 57%]
s.sssssssss.ssssssssssssssss..sssssss.ss.ssssssssssssssssssssssssss..sss [ 57%]
sssssssssssss.ssssss.sssssssssssssss.sssssssssssssssssssss.sssssssssssss [ 57%]
ssssssssssss.sssssss.sssss..ssssssssssssssssssssssssssss.sssssssssssssss [ 58%]
ssssssss.sssssssssssssss.ssss.sss.sssssssssssssssssssssss.sssssssssssssss [ 58%]
.sssssssssss..sssssssssss.sssss.ssssss.ssssssssss.sssssssssssss.ssss.sss [ 58%]
sssssssssssssssssssssssssssssssssssssssssssss.ssssssssssssssss.s.sssssss. [ 58%]
s.sssssssssssssss.sss.s.sssssss.ssssssssssss.ssssssssssssssssssssssss.ss [ 59%]
sssssssssssssssssss.sssssssssss.sssssssss.ssssss.sssss.ssssssssss.ssssss [ 59%]
sssssssss.ssssssssssssss.ssssss.sssssssssssssss.sssssssssss.ssssss.sssss [ 59%]
sssssss.ssssssssssssssssssssssss.sssssssssssssssssss.ssssssssssssss.ssss [ 59%]
ssss..ssssssssssssssssssssssssssss.ssssssssssss.ssssssss.ssssssssssssssss [ 60%]
s.sssssssss.ssssssssss.sssss.sss..sssss.ssssssssssssssssssssssssss.sssss [ 60%]
.ssssssssssss.ssssssssssssssssssssssssssssssssssssssssss.sssssssssssssss [ 60%]
ssss.ssssssssssssssssssss.ssssssssssssssssssssssssssssss.sssssssssssssss [ 60%]
sss.s.ssssss.sssssssssssssssssssssssss.sssssss.sssssssssssssssssssss.sss [ 61%]
ssss..ssssssssssssssssss..ssssssssssss..ssssssssssss.sss.sssssssssssssss [ 61%]
ssssssssssssssssssssssss.ss.sssssssssssss...sssssssssssssss.sss..sssssss [ 61%]
ssss.ssssssssssssssssssssssss.sss.ssssssssssssssssssssssssssssssssssssss.s [ 62%]
ss.sssssssssssss.sssssssssssssssssssss.ssssssssssssssssssss.ss.sssssssss [ 62%]
ssssssssssssss.ssssssssssss.sssssssssss.ssssssssssssssss.sssssss.ssss.ss [ 62%]
ssssssss..ssssss.ssssssssssssssssss.sssssss.sss.sssssssssssssssss..sssss [ 62%]
sssssssss.sssssssssssssssss.ssss.sssssssssssssssssssss.sss.sssssssss.sss [ 63%]
ssssssss.ssssssssssss.ssssssssssssss.ssssssss.ssss.ssssssss.ssssssssssss [ 63%]
ssssssss.ssssss.ssssssssssss.ssssssss.s..sss.ssssss.ss.................. [ 63%]
........................................................................ [ 63%]
........................................................................ [ 64%]
........................................................................ [ 64%]
........................................................................ [ 64%]
........................................................................ [ 64%]
........................................................................ [ 65%]
........................................................................ [ 65%]
........................................................................ [ 65%]
......................................................................ss [ 65%]
.sssssssss.s.ssss.sssssssssss..sssssss.ss.s.s..sssss.ssssss.ssssssssssss [ 66%]
........................................................................ [ 66%]
........................................................................ [ 66%]
........................................................................ [ 66%]
........................................................................ [ 67%]
......................................................................... [ 67%]
........................................................................ [ 67%]
........................................................................ [ 68%]
........................................................................ [ 68%]
........................................................................ [ 68%]
........................................................................ [ 68%]
......................................................................... [ 69%]
........................................................................ [ 69%]
........................................................................ [ 69%]
........................................................................ [ 69%]
......................................................................... [ 70%]
........................................................................ [ 70%]
......................................................................... [ 70%]
........................................................................ [ 70%]
........................................................................ [ 71%]
......................................................................... [ 71%]
........................................................................ [ 71%]
........................................................................ [ 71%]
........................................................................ [ 72%]
........................................................................ [ 72%]
......................................................................... [ 72%]
........................................................................ [ 72%]
........................................................................ [ 73%]
........................................................................ [ 73%]
........................................................................ [ 73%]
........................................................................ [ 74%]
........................................................................ [ 74%]
........................................................................ [ 74%]
........................................................................ [ 74%]
........................................................................ [ 75%]
........................................................................ [ 75%]
........................................................................ [ 75%]
........................................................................ [ 75%]
........................................................................ [ 76%]
........................................................................ [ 76%]
........................................................................ [ 76%]
........................................................................ [ 76%]
......................................................................... [ 77%]
........................................................................ [ 77%]
........................................................................ [ 77%]
........................................................................ [ 77%]
........................................................................ [ 78%]
........................................................................ [ 78%]
........................................................................ [ 78%]
........................................................................ [ 78%]
........................................................................ [ 79%]
........................................................................ [ 79%]
........................................................................ [ 79%]
........................................................................ [ 80%]
......................................................................... [ 80%]
........................................................................ [ 80%]
........................................................................ [ 80%]
........................................................................ [ 81%]
........................................................................ [ 81%]
........................................................................ [ 81%]
........................................................................ [ 81%]
........................................................................ [ 82%]
........................................................................ [ 82%]
........................................................................ [ 82%]
........................................................................ [ 82%]
........................................................................ [ 83%]
........................................................................ [ 83%]
........................................................................ [ 83%]
........................................................................ [ 83%]
......................................................................... [ 84%]
........................................................................ [ 84%]
........................................................................ [ 84%]
........................................................................ [ 84%]
........................................................................ [ 85%]
........................................................................ [ 85%]
........................................................................ [ 85%]
........................................................................ [ 86%]
........................................................................ [ 86%]
........................................................................ [ 86%]
........................................................................ [ 86%]
........................................................................ [ 87%]
........................................................................ [ 87%]
........................................................................ [ 87%]
........................................................................ [ 87%]
........................................................................ [ 88%]
........................................................................ [ 88%]
........................................................................ [ 88%]
........................................................................ [ 88%]
........................................................................ [ 89%]
........................................................................ [ 89%]
........................................................................ [ 89%]
........................................................................ [ 89%]
........................................................................ [ 90%]
........................................................................ [ 90%]
......................................................................... [ 90%]
......................................................................... [ 90%]
........................................................................ [ 91%]
........................................................................ [ 91%]
......................................................................... [ 91%]
........................................................................ [ 92%]
........................................................................ [ 92%]
........................................................................ [ 92%]
......................................................................... [ 92%]
........................................................................ [ 93%]
..................................................ss.ssss............... [ 93%]
............................................s............................ [ 93%]
.............................X......X....x....X...x...X..........x.....x [ 93%]
........................................................................ [ 94%]
........................................................................ [ 94%]
........................................................................ [ 94%]
........................................................................ [ 94%]
........................................................................ [ 95%]
........................................................................ [ 95%]
........................................................................ [ 95%]
........................................................................ [ 95%]
........................................................................ [ 96%]
........................................................................ [ 96%]
........................................................................ [ 96%]
........................................................................ [ 96%]
........................................................................ [ 97%]
....................................x...F.....F.......F.........x....x.x [ 97%]
....xx..x........x....x..F..x..x....F..x..F..................x.......... [ 97%]
........x......F...F....F.........x..................................... [ 98%]
........................................................................ [ 98%]
........................................................................ [ 98%]
.................x...................................................... [ 98%]
........................................................................ [ 99%]
........................................................................ [ 99%]
........................................................................ [ 99%]
........................................................................ [ 99%]
.................................................                        [100%]
=================================== FAILURES ===================================
___________________ test_simple_row_groupby[True-False-by12] ___________________
[gw33] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
___________________ test_simple_row_groupby[True-False-by11] ___________________
[gw18] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/groupby.py", line 188, in mean
    **kwargs,
  File "/modin/modin/pandas/groupby.py", line 634, in _wrap_aggregation
    drop=self._drop,
  File "/modin/modin/data_management/functions/groupby_function.py", line 142, in caller
    axis, by._modin_frame, _map, _reduce
  File "/modin/modin/engines/base/frame/data.py", line 1704, in groupby_reduce
    1, new_partitions, lambda df: df.columns
  File "/modin/modin/engines/dask/pandas_on_dask/frame/partition_manager.py", line 97, in get_indices
    new_idx = client.gather(new_idx)
  File "/opt/conda/lib/python3.7/site-packages/distributed/client.py", line 1982, in gather
    asynchronous=asynchronous,
  File "/opt/conda/lib/python3.7/site-packages/distributed/client.py", line 832, in sync
    self.loop, func, *args, callback_timeout=callback_timeout, **kwargs
  File "/opt/conda/lib/python3.7/site-packages/distributed/utils.py", line 339, in sync
    raise exc.with_traceback(tb)
  File "/opt/conda/lib/python3.7/site-packages/distributed/utils.py", line 323, in f
    result[0] = yield future
  File "/opt/conda/lib/python3.7/site-packages/tornado/gen.py", line 735, in run
    value = future.result()
  File "/opt/conda/lib/python3.7/site-packages/distributed/client.py", line 1841, in _gather
    raise exception.with_traceback(traceback)
  File "/modin/modin/engines/base/frame/axis_partition.py", line 202, in deploy_axis_func
    result = func(dataframe, **kwargs)
  File "/modin/modin/data_management/functions/groupby_function.py", line 134, in _reduce
    return compute_reduce(df)
  File "/modin/modin/data_management/functions/groupby_function.py", line 112, in compute_reduce
    df.groupby(by=by_part, axis=axis, **groupby_args), **reduce_args
  File "/modin/modin/backends/pandas/query_compiler.py", line 2037, in <lambda>
    lambda x: x.loc[:, "sum"].sum() / x.loc[:, "count"].sum()
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 736, in apply
    result = self._python_apply_general(f)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 755, in _python_apply_general
    keys, values, not_indexed_same=mutated or self.mutated
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 1338, in _wrap_applied_output
    return self._reindex_output(result)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 2511, in _reindex_output
    output = output.drop(labels=list(g_names), axis=1)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3997, in drop
    errors=errors,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3936, in drop
    obj = obj._drop_axis(labels, axis, level=level, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3970, in _drop_axis
    new_axis = axis.drop(labels, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 5018, in drop
    raise KeyError(f"{labels[mask]} not found in axis")
KeyError: "[('col1', '') ('col5', '')] not found in axis"
----------------------------- Captured stderr call -----------------------------
distributed.worker - WARNING -  Compute Failed
Function:  deploy_axis_func
args:      (0, <function GroupbyReduceFunction.call.<locals>.caller.<locals>._reduce at 0x7fc6105778c0>, 4, {}, True,            sum count   sum count  sum count
          col2  col2  col3  col3 col4  col4
col1 col5                                  
0    -4    4.0     1   0.0     0   17     1
1    -5    5.0     1   0.0     0   13     1
2    -6    0.0     0  12.0     1   16     1
3    -7    7.0     1  10.0     1   15     1)
kwargs:    {}
Exception: KeyError("[('col1', '') ('col5', '')] not found in axis")

___________________ test_simple_row_groupby[True-False-by14] ___________________
[gw33] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/groupby.py", line 188, in mean
    **kwargs,
  File "/modin/modin/pandas/groupby.py", line 634, in _wrap_aggregation
    drop=self._drop,
  File "/modin/modin/data_management/functions/groupby_function.py", line 142, in caller
    axis, by._modin_frame, _map, _reduce
  File "/modin/modin/engines/base/frame/data.py", line 1704, in groupby_reduce
    1, new_partitions, lambda df: df.columns
  File "/modin/modin/engines/dask/pandas_on_dask/frame/partition_manager.py", line 97, in get_indices
    new_idx = client.gather(new_idx)
  File "/opt/conda/lib/python3.7/site-packages/distributed/client.py", line 1982, in gather
    asynchronous=asynchronous,
  File "/opt/conda/lib/python3.7/site-packages/distributed/client.py", line 832, in sync
    self.loop, func, *args, callback_timeout=callback_timeout, **kwargs
  File "/opt/conda/lib/python3.7/site-packages/distributed/utils.py", line 339, in sync
    raise exc.with_traceback(tb)
  File "/opt/conda/lib/python3.7/site-packages/distributed/utils.py", line 323, in f
    result[0] = yield future
  File "/opt/conda/lib/python3.7/site-packages/tornado/gen.py", line 735, in run
    value = future.result()
  File "/opt/conda/lib/python3.7/site-packages/distributed/client.py", line 1841, in _gather
    raise exception.with_traceback(traceback)
  File "/modin/modin/engines/base/frame/axis_partition.py", line 202, in deploy_axis_func
    result = func(dataframe, **kwargs)
  File "/modin/modin/data_management/functions/groupby_function.py", line 134, in _reduce
    return compute_reduce(df)
  File "/modin/modin/data_management/functions/groupby_function.py", line 112, in compute_reduce
    df.groupby(by=by_part, axis=axis, **groupby_args), **reduce_args
  File "/modin/modin/backends/pandas/query_compiler.py", line 2037, in <lambda>
    lambda x: x.loc[:, "sum"].sum() / x.loc[:, "count"].sum()
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 736, in apply
    result = self._python_apply_general(f)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 755, in _python_apply_general
    keys, values, not_indexed_same=mutated or self.mutated
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 1338, in _wrap_applied_output
    return self._reindex_output(result)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 2511, in _reindex_output
    output = output.drop(labels=list(g_names), axis=1)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3997, in drop
    errors=errors,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3936, in drop
    obj = obj._drop_axis(labels, axis, level=level, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3970, in _drop_axis
    new_axis = axis.drop(labels, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 5018, in drop
    raise KeyError(f"{labels[mask]} not found in axis")
KeyError: "[('col5', '') ('col4', '') ('col1', '')] not found in axis"
----------------------------- Captured stderr call -----------------------------
RuntimeWarning: overflow encountered in reduce
distributed.worker - WARNING -  Compute Failed
Function:  deploy_axis_func
args:      (0, <function GroupbyReduceFunction.call.<locals>.caller.<locals>._reduce at 0x7f8990739cb0>, 4, {}, True,                 sum count   sum count
               col2  col2  col3  col3
col5 col4 col1                       
-7   15   3     7.0     1  10.0     1
-6   16   2     0.0     0  12.0     1
-5   13   1     5.0     1   0.0     0
-4   17   0     4.0     1   0.0     0)
kwargs:    {}
Exception: KeyError("[('col5', '') ('col4', '') ('col1', '')] not found in axis")

__________________ test_simple_row_groupby[False-False-by13] ___________________
[gw24] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
___________________ test_simple_row_groupby[True-False-by13] ___________________
[gw15] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________ test_simple_row_groupby[False-False-by11] ___________________
[gw39] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________ test_simple_row_groupby[False-False-by14] ___________________
[gw12] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________ test_simple_row_groupby[False-False-by12] ___________________
[gw16] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________________ test_agg_exceptions[mean] ___________________________
[gw28] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/utils.py", line 607, in execute_callable
    pd_result = fn(pandas_df, **pd_kwargs)
  File "/modin/modin/pandas/test/test_groupby.py", line 66, in <lambda>
    operation, *args, **kwargs
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 928, in aggregate
    result, how = self._aggregate(func, *args, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/base.py", line 311, in _aggregate
    return self._try_aggregate_string_function(arg, *args, **kwargs), None
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/base.py", line 267, in _try_aggregate_string_function
    return f(*args, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 1226, in mean
    "mean", alt=lambda x, axis: Series(x).mean(**kwargs), **kwargs
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 994, in _cython_agg_general
    how, alt=alt, numeric_only=numeric_only, min_count=min_count
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 1095, in _cython_agg_blocks
    raise DataError("No numeric types to aggregate")
pandas.core.base.DataError: No numeric types to aggregate

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 1136, in test_agg_exceptions
    eval_aggregation(*create_test_dfs(data), operation=operation)
  File "/modin/modin/pandas/test/test_groupby.py", line 69, in eval_aggregation
    **kwargs,
  File "/modin/modin/pandas/test/utils.py", line 635, in eval_general
    operation, md_kwargs=md_kwargs, pd_kwargs=pd_kwargs, inplace=__inplace__
  File "/modin/modin/pandas/test/utils.py", line 613, in execute_callable
    repr(fn(modin_df, **md_kwargs))
  File "/opt/conda/lib/python3.7/site-packages/_pytest/python_api.py", line 744, in __exit__
    fail(self.message)
  File "/opt/conda/lib/python3.7/site-packages/_pytest/outcomes.py", line 156, in fail
    raise Failed(msg=msg, pytrace=pytrace)
Failed: DID NOT RAISE <class 'Exception'>

----------- coverage: platform linux, python 3.7.7-final-0 -----------
Coverage XML written to file coverage.xml

=========================== short test summary info ============================
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by12]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by11]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by14]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by13]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by13]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by11]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by14]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by12]
FAILED modin/pandas/test/test_groupby.py::test_agg_exceptions[mean] - Failed:...
= 9 failed, 22189 passed, 3811 skipped, 598 xfailed, 1061 xpassed, 42694 warnings in 1352.92s (0:22:32) =


<b>Remaining output truncated<b>


@modin-bot
Copy link

TeamCity Ray test results bot

Tests FAILed

Tests Logs
mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/groupby.py", line 188, in mean
    **kwargs,
  File "/modin/modin/pandas/groupby.py", line 634, in _wrap_aggregation
    drop=self._drop,
  File "/modin/modin/data_management/functions/groupby_function.py", line 142, in caller
    axis, by._modin_frame, _map, _reduce
  File "/modin/modin/engines/base/frame/data.py", line 1704, in groupby_reduce
    1, new_partitions, lambda df: df.columns
  File "/modin/modin/engines/ray/pandas_on_ray/frame/partition_manager.py", line 94, in get_indices
    new_idx = ray.get(new_idx)
  File "/opt/conda/lib/python3.7/site-packages/ray/worker.py", line 1474, in get
    raise value.as_instanceof_cause()
ray.exceptions.RayTaskError(KeyError): �[36mray::modin.engines.ray.pandas_on_ray.frame.partition.deploy_ray_func()�[39m (pid=8703, ip=172.17.0.3)
  File "python/ray/_raylet.pyx", line 410, in ray._raylet.execute_task
  File "python/ray/_raylet.pyx", line 432, in ray._raylet.execute_task
ray.exceptions.RayTaskError: �[36mray::modin.engines.ray.pandas_on_ray.frame.axis_partition.deploy_ray_func()�[39m (pid=8703, ip=172.17.0.3)
  File "python/ray/_raylet.pyx", line 446, in ray._raylet.execute_task
  File "/modin/modin/engines/ray/pandas_on_ray/frame/axis_partition.py", line 103, in deploy_ray_func
    result = func(*args)
  File "/modin/modin/engines/base/frame/axis_partition.py", line 202, in deploy_axis_func
    result = func(dataframe, **kwargs)
  File "/modin/modin/data_management/functions/groupby_function.py", line 134, in _reduce
    return compute_reduce(df)
  File "/modin/modin/data_management/functions/groupby_function.py", line 112, in compute_reduce
    df.groupby(by=by_part, axis=axis, **groupby_args), **reduce_args
  File "/modin/modin/backends/pandas/query_compiler.py", line 2037, in <lambda>
    lambda x: x.loc[:, "sum"].sum() / x.loc[:, "count"].sum()
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 736, in apply
    result = self._python_apply_general(f)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 755, in _python_apply_general
    keys, values, not_indexed_same=mutated or self.mutated
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 1338, in _wrap_applied_output
    return self._reindex_output(result)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 2511, in _reindex_output
    output = output.drop(labels=list(g_names), axis=1)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3997, in drop
    errors=errors,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3936, in drop
    obj = obj._drop_axis(labels, axis, level=level, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3970, in _drop_axis
    new_axis = axis.drop(labels, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 5018, in drop
    raise KeyError(f"{labels[mask]} not found in axis")
KeyError: "[('col5', '') ('col4', '') ('col1', '')] not found in axis"
__________________ test_simple_row_groupby[False-False-by11] ___________________
[gw3] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________ test_simple_row_groupby[False-False-by14] ___________________
[gw5] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________________ test_agg_exceptions[mean] ___________________________
[gw7] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/utils.py", line 607, in execute_callable
    pd_result = fn(pandas_df, **pd_kwargs)
  File "/modin/modin/pandas/test/test_groupby.py", line 66, in <lambda>
    operation, *args, **kwargs
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 928, in aggregate
    result, how = self._aggregate(func, *args, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/base.py", line 311, in _aggregate
    return self._try_aggregate_string_function(arg, *args, **kwargs), None
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/base.py", line 267, in _try_aggregate_string_function
    return f(*args, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 1226, in mean
    "mean", alt=lambda x, axis: Series(x).mean(**kwargs), **kwargs
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 994, in _cython_agg_general
    how, alt=alt, numeric_only=numeric_only, min_count=min_count
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 1095, in _cython_agg_blocks
    raise DataError("No numeric types to aggregate")
pandas.core.base.DataError: No numeric types to aggregate

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 1136, in test_agg_exceptions
    eval_aggregation(*create_test_dfs(data), operation=operation)
  File "/modin/modin/pandas/test/test_groupby.py", line 69, in eval_aggregation
    **kwargs,
  File "/modin/modin/pandas/test/utils.py", line 635, in eval_general
    operation, md_kwargs=md_kwargs, pd_kwargs=pd_kwargs, inplace=__inplace__
  File "/modin/modin/pandas/test/utils.py", line 613, in execute_callable
    repr(fn(modin_df, **md_kwargs))
  File "/opt/conda/lib/python3.7/site-packages/_pytest/python_api.py", line 744, in __exit__
    fail(self.message)
  File "/opt/conda/lib/python3.7/site-packages/_pytest/outcomes.py", line 156, in fail
    raise Failed(msg=msg, pytrace=pytrace)
Failed: DID NOT RAISE <class 'Exception'>

----------- coverage: platform linux, python 3.7.7-final-0 -----------
Coverage XML written to file coverage.xml

=========================== short test summary info ============================
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by11]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by12]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by13]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by12]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by13]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by14]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by11]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by14]
FAILED modin/pandas/test/test_groupby.py::test_agg_exceptions[mean] - Failed:...
= 9 failed, 22189 passed, 3811 skipped, 598 xfailed, 1061 xpassed, 42568 warnings in 1449.23s (0:24:09) =
============================= test session starts ==============================
platform linux -- Python 3.7.7, pytest-6.0.1, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: openfiles-0.5.0, remotedata-0.3.2, cov-2.10.0, forked-1.3.0, xdist-1.34.0
collected 94 items

modin/pandas/test/test_io.py .................sx..........s............. [ 45%]
...................s..s.X.....s.................ss.                      [100%]

----------- coverage: platform linux, python 3.7.7-final-0 -----------
Coverage XML written to file coverage.xml


= 85 passed, 7 skipped, 1 xfailed, 1 xpassed, 102 warnings in 69.33s (0:01:09) =
Closing remaining open files:test_write_modin.hdf...donetest_write_pandas.hdf...done
============================= test session starts ==============================
platform linux -- Python 3.7.7, pytest-6.0.1, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: openfiles-0.5.0, remotedata-0.3.2, cov-2.10.0, forked-1.3.0, xdist-1.34.0
gw0 I / gw1 I / gw2 I / gw3 I / gw4 I / gw5 I / gw6 I / gw7 I / gw8 I / gw9 I / gw10 I / gw11 I / gw12 I / gw13 I / gw14 I / gw15 I / gw16 I / gw17 I / gw18 I / gw19 I / gw20 I / gw21 I / gw22 I / gw23 I / gw24 I / gw25 I / gw26 I / gw27 I / gw28 I / gw29 I / gw30 I / gw31 I / gw32 I / gw33 I / gw34 I / gw35 I / gw36 I / gw37 I / gw38 I / gw39 I / gw40 I / gw41 I / gw42 I / gw43 I / gw44 I / gw45 I / gw46 I / gw47 I
gw0 [27668] / gw1 [27668] / gw2 [27668] / gw3 [27668] / gw4 [27668] / gw5 [27668] / gw6 [27668] / gw7 [27668] / gw8 [27668] / gw9 [27668] / gw10 [27668] / gw11 [27668] / gw12 [27668] / gw13 [27668] / gw14 [27668] / gw15 [27668] / gw16 [27668] / gw17 [27668] / gw18 [27668] / gw19 [27668] / gw20 [27668] / gw21 [27668] / gw22 [27668] / gw23 [27668] / gw24 [27668] / gw25 [27668] / gw26 [27668] / gw27 [27668] / gw28 [27668] / gw29 [27668] / gw30 [27668] / gw31 [27668] / gw32 [27668] / gw33 [27668] / gw34 [27668] / gw35 [27668] / gw36 [27668] / gw37 [27668] / gw38 [27668] / gw39 [27668] / gw40 [27668] / gw41 [27668] / gw42 [27668] / gw43 [27668] / gw44 [27668] / gw45 [27668] / gw46 [27668] / gw47 [27668]

........................................................................ [  0%]
........................................................................ [  0%]
........................................................................ [  0%]
........................................................................ [  1%]
......................................................................... [  1%]
........................................................................ [  1%]
........................................................................ [  1%]
........................................................................ [  2%]
........................................................................ [  2%]
........................................................................ [  2%]
...........................................................x............ [  2%]
...............................x...........X............................ [  3%]
......X................X............................X................... [  3%]
........................................................................ [  3%]
..........................................x..........................x.. [  3%]
.................x................X................X.................... [  4%]
x..................................X............X...................X... [  4%]
.......s...X...................s.....x......x............X...........xx. [  4%]
X......X..............X...X.X...x.....X.x....X..XX.XX....x.........X..xx [  4%]
.X.XX....X.......XXX.X.X...XX.XX.X.x........XXX.....X.X.....X.XX..X.XXX. [  5%]
.X......X....XXX.XX.xXXXX......XXXXx.XX...X.X.XX..X.X...XXx..XX.XxXX.... [  5%]
....XX...X..X..Xx..x......XX.xX...X.X..XX...X.x..x..X..X.X..X...X..x..X. [  5%]
X....X........X..XX...X.....XX......X...XX...X..X....X.....X.X...X...... [  5%]
.X........XX.X...................X...X................X..X...........X.. [  6%]
.........X......X...............XX..X.........X..X..x...X...X.x..X....X. [  6%]
..XX...XX.....XxX...x...X..X.Xx.XXXXX.XX..........xxX.XX.XXXXX.......... [  6%]
X..XX.XXXX.X..XX.XX..X......XXX...XX.X..X...XX.....XXX..XX.XX.XX.......X. [  7%]
X.x..XXX......XXX............X...xXXX.X.................X...xXX...X.XX.. [  7%]
....X....x...X.X...X....X.X.x..XX..X..x........x..XX....x.....X.XX.....x [  7%]
..X..............XX....X..XxX.........X....XX......X......X...XXX..x...X [  7%]
..xX.XX..........X.X........X.xX.X.xXX.........X.....X....X...x.XX..X... [  8%]
......XX............X.XXX.....x.........X.....X..X....X.X..X.X.........X [  8%]
XX.X......X.X.........X.X.........X..X............X...X.X......X..X..... [  8%]
X..X.......X.X.......X..xX..X.......X........XX...Xx.....XX..X.......X.. [  8%]
..X........X..............X.X.................X.......X..X........X..... [  9%]
......X...X..s..............X...X.......X.XX............X..X.........X.. [  9%]
X.....X....X......................X........xXXx.X........X.......Xx.X.x. [  9%]
..X....x.Xx.XX.....XXX............X..XXX..X....XX.....X.....XX.......... [  9%]
...X..X.........x..X..XX.........X.X.X...Xx..X....X...xX..X....X....X.... [ 10%]
.....x.X...X.......X.......X..XX.X...........X...X..X..X.X..X.......XX.. [ 10%]
.X......X..XX....Xx..X..X.........X....x....X.........XXX..X.......X.... [ 10%]
X......X...X.....X.xX..x..X..X....X......x..X..X...X...XX.X.XX.......xXX [ 10%]
.....XX.....X...X...............x..x...XX.......XX.x...XX.xX...Xx...X.X. [ 11%]
..x....XxX..x.X......x.........X.............sssssssssssssssss..sssssssX [ 11%]
sss...X...........X......X........X.....x..xX.X.X.x.X.....x.....X..XX.XX [ 11%]
Xx..X...x..X...Xx...X..........X.X.X.......XXXX...x............X....X... [ 11%]
.X......x.X........xsssssssssssssssssssss..sssssX...x.............X..... [ 12%]
...Xx.........xX.XX..............xX..X.x..x.....X.Xx.....X...Xx......x.. [ 12%]
...X...x.X.xx.ss.sssssssssssssssssssssssss........xX...XX.X......X...... [ 12%]
...xX....x..Xx.Xx............xX..Xx........X......ssssssssssssssssssssss [ 13%]
sssss..X.x................XX..X.....X...xx..x..Xx..x...x.Xssss.sssssssss [ 13%]
sssssssssssss.x..X.xX.XX.x......X.XXXxXX.XX.X...x..x.XXss.ssssssssssssss [ 13%]
sssssssssss.XXssssssssssssss.sssssss.sssss..x....XX....X....X..X.x..X... [ 13%]
XX..X....X..X..........x.........XX...X...........X......X.........sssss [ 14%]
sssssss.ssssssssssssss....X..X.X.x...xXx.....x...x.xXx..X..........X..Xx [ 14%]
.X..............XXX.......................sssssssssss.sssssssssssssss... [ 14%]
.XX...............x.......X....x...........x..X...X..xX....x..........xs [ 14%]
sssssssssssssssssssssssss.XX....xsssss.ssssssssssss.sssssssss...X.....xx [ 15%]
...x..X.x..................................X.x.X...xx.X.......x........X [ 15%]
..X..................X.X.XX.ssssssssssssssssssss.ssssss....ssss.ssssssss [ 15%]
sssssssssssssss.X........X........X..ssssssssssssssssssssssssssxx....X.. [ 15%]
....Xx....x......XX.X....X....x....x..X.....ssssssssssssssssssssssssss.x [ 16%]
......x...........X..........x.......X..X......X.X.....x.........XX.xX.. [ 16%]
...x............Xx..x....x......x......xX.X..x......ssssssssssssssssssss [ 16%]
ssssss.X...xX.....X..x.........x...XXX.xX....X......X.X......xx....X.... [ 16%]
.Xssssssssssssssss..ssssssssssX........sssssssssssssssssssssss.sss.sssss [ 17%]
ssssssssssssssssssssss.......X.........xssssssssssssssssssssssssss...... [ 17%]
x...............X.......x..........x......x........X...................x [ 17%]
.......xXXX......x....x.......ssssssssssssssss..ssssssssss.......x..X... [ 17%]
.....xx.....x...X...x.......Xx...x..x....X....X.....................x... [ 18%]
x........XX.........................X......x.x.sssssssssssssssssssssssss [ 18%]
ss...........X.....X.x............x.X.X..x....x..X......x....X....x...ss [ 18%]
ssssssssssssssssssss..ssss....x..x........x...X.............x........X.. [ 19%]
X....x.......................x.......x.ssssssssss.ssssss.ssssssssss..... [ 19%]
......X.............x.......x....X..X..............X.............X..x... [ 19%]
.x.....ssssssssssssssssssssssssss....X.x..................X.....X....... [ 19%]
..x.....X.....X.....X.....x..............sssssssssssssssssssssssssss...x [ 20%]
.....XX.....x........X................x......Xx.X........x...x.......... [ 20%]
.....x.XX...X.s........x..........XX.......XX.X..........X.......x...xX. [ 20%]
X.X.X...X.......X.......X..........XX...XX.........x.X..........X....... [ 20%]
x....X.....X...X...XX............................X.X.X..ss.sssssssssssss [ 21%]
sssssssssss..........................X..................X............Xx. [ 21%]
........................X.x......x......x..........................X.... [ 21%]
......................x..........XX....X............................xsss [ 21%]
sssssssssssssssssssssss....x......x..................................... [ 22%]
..x.X................x..........X............X.........xx........x...... [ 22%]
.................X..................x........X.......x.................. [ 22%]
X......x......x.......x....................X......XX....ssssssssssssssss [ 22%]
.ssssssssss.x........x......X...X....XX...........X...............X.xx.. [ 23%]
...x..............X..X..X..................x......x....XxXX............. [ 23%]
................x....XX..x.................x.............X.....x........ [ 23%]
.X.x...........x..x.......XX...............x.......x...............X.... [ 23%]
..sssssssssssssssssssssss.sss.....xX.......x......x..............X..X... [ 24%]
....X.....................X.s.ssssssss.sssssssssssssssssxX.....x........ [ 24%]
x......X........x...X.....................x.............xX.Xx........... [ 24%]
....X.x......X...........X.x...x.ssssssssssssssssssssssssss.X......XX... [ 24%]
....................X...x...X....X..x..........X...............X....X... [ 25%]
.x...............x.xX............X.....X.........x...x...........x....X. [ 25%]
.....X.X.......x......x..X......x....x.......X.X....X...............x... [ 25%]
x..X.....X........................X....x..xX...................x.....X.. [ 26%]
.......x..X..................................x...X.....................x [ 26%]
......X....x....x...x.X..x...X.....xssssssssssssss......X..X............ [ 26%]
.....................x...x......X.x.XX.........x.........X....x.Xx.....X [ 26%]
.xx.X..........X...x.x.X...Xx..Xx........X...x..x...x.x...XXX..........x [ 27%]
....x...X.......x.X.x.x..X..........x.x.....x.x..X.........x.X.x.....xxX [ 27%]
...X..........X..xx......xXx...X.......X........xX....xx...X..X......xX. [ 27%]
..x.x..X.x..X.xXx........XX.......XxX.......XXx..xx...xX..X...XX........ [ 27%]
..X...X..X..x..X.X...X...X.X..x.sssssssssssssssssssssssssssXX......X...X [ 28%]
....X..XX...X.....x.X....x.xxXX.X.....X..X......XXxX..x..x..X..X..X...X.. [ 28%]
.X.....X.xXx......x..Xx.XX............s.ssssssssXssssssssssssss.ssXss... [ 28%]
...X.xx.............X.....X........x...x.....X.X..X.........xx...x..Xx.. [ 28%]
.X.x.....x...XX........x...x..XX....XX..XX......x...Xx.X..x..X...xX.ssss [ 29%]
sssssssssssssssssssssss.......X...x...X.x...x......X..XxX....x.......Xxx [ 29%]
X...x.....X.....X....XX..x..X.Xx.........XX......x.........xXX.x.....Xx. [ 29%]
...X...X.x....Xx.X....X.x...sssssssssssssssssssssssssss...x...ssssssssss [ 29%]
ssssssssssssssss...X.X..........x...x....Xx....X.x.............xX..X...x [ 30%]
.........xsssssssssssss.ssssssssssssss......X..........x.x...x..x....... [ 30%]
x....x.........x..........x...xX......X..........xX...........X..xx...X. [ 30%]
.ssssssssss.sssssssxsssss..ssss...X..........x..........X....X...X....X. [ 30%]
x........X......x.............x..x..XX.x.......X.......X...x......X..... [ 31%]
..X......X.........X.x.X......X....Xx.........Xx........X.......x.X..X.. [ 31%]
..X............X.X..........X.X..........X..X...........X..x...X.X....... [ 31%]
.x.......x..x..........x..X.....x....sssssssssss.s.ssssssssss.s.sss....x [ 32%]
..........x..............x....Xx.....x....x...x.x......xX.........x..x.. [ 32%]
.x.......xx..x...x........x..x.x..xX......xx.x.....x......xx..X......xss [ 32%]
ssssssssssssss.ssssssssss.......x..x.......x...x...xx..x.........x..x..x [ 32%]
x.........xxx........X.......X.X.......X...XX....XX.........XX...X..X... [ 33%]
XX...............X...XX....X.X.X.....X..X...........X....X........X..... [ 33%]
.......X.X......X....X......x..............Xx......x...........x.x.....x [ 33%]
.......x........x....x.........x................x......................x [ 33%]
..................x..x....................x..........x.........x........ [ 34%]
....xx........X.........XX......xX..................x............X...... [ 34%]
..X............X...........x....X..x..X....x.....XX.....X.X....X...X.... [ 34%]
....X.............X......X.....X.......x....x.x.x..X...x.x.......x.....x [ 34%]
..........x.x...............x.xX...X.........XX.x.X...X.........x.x..... [ 35%]
.....x............X.xXX....X....x..x.x...x...ssssssssssssss.ssssssss.sss [ 35%]
s..........x........x.........x..........x....xx........xX.........sssss [ 35%]
s..sssssssssssss.ss.sss.ssX..xX...x...X....X.....XX........X..x.X.X..XXX [ 35%]
X..X..x......X.......ssxssssssssssssssssssss..ssss.X.....X.......X...... [ 36%]
...........x......x............sss.ssssssss..sssssssss.....ss.sXs.s..s.. [ 36%]
...x.......X...........xxxxX..x............xxX.......................... [ 36%]
..........x.......X..X.......x............X..................x........xX [ 36%]
....X......xs.s.s.ss..s.ss.Xsss.sX...ss.sssss.ss.Xsssss................. [ 37%]
...........x.x....x.sss.sss.s.sss.sXs.ss.ss.ss.ss.ssss..ss.............. [ 37%]
.........x....x.....X...........x........................x...X........... [ 37%]
...x...................................x....xxX..ss...ss.ssss.s..sssssss [ 38%]
s.sss.sssss.s....X.......X.....x....x.X..............X...........X.s.... [ 38%]
.X..........................x...................x................x...... [ 38%]
................X................x.X.........................X.......... [ 38%]
.......x..........................................................x..... [ 39%]
...............x......x.......................x..............X.......... [ 39%]
........................................................................ [ 39%]
..............................X......................................... [ 39%]
........x............................................................... [ 40%]
...............................x......................................... [ 40%]
....x................................................................... [ 40%]
.........................x..................................x........... [ 40%]
........................................................................ [ 41%]
.x................................................................X..... [ 41%]
.....................................................................X.. [ 41%]
........X.......................................................x....... [ 41%]
................................................................x........ [ 42%]
............................................................x........... [ 42%]
...................................................x.................... [ 42%]
....................................x................................... [ 42%]
......................................x................................. [ 43%]
...........X............................................................. [ 43%]
......................................X..............................x.. [ 43%]
......................................................................... [ 44%]
............x................................x.......................... [ 44%]
......................................................................... [ 44%]
............x................................x.......................... [ 44%]
........................................................................ [ 45%]
...............................xX......X...........................X.... [ 45%]
.......................................................................X [ 45%]
....................X................................................... [ 45%]
...........................................X.........................X.. [ 46%]
.....X.....................X......................X..................... [ 46%]
........................X..........................................s.sss [ 46%]
........................................................X............... [ 46%]
.......X................................................................ [ 47%]
............X.......................X.........X.......................X. [ 47%]
...................X.....................X.............................. [ 47%]
.........................................................X............... [ 47%]
.........X.............................................................. [ 48%]
.........................X.........................X.........X.......... [ 48%]
.......X..........................X.........................X........... [ 48%]
......................................................................... [ 48%]
X.........................X............................................. [ 49%]
.............................................X.........................X [ 49%]
..................X..................................X.................. [ 49%]
...........X...............................................X............ [ 50%]
........................................................................ [ 50%]
......X................................................................. [ 50%]
........................................................................ [ 50%]
......................................................................... [ 51%]
........................................................................ [ 51%]
........................................................................ [ 51%]
...........................................................ssss.s..ssss. [ 51%]
s.......sssssssss.sss.ss.ss.s.sss..ssss.sss.s.s.s.sssss.s.s.s..ssss.s.s.s [ 52%]
ss.sssss.ssss.s..sss.ssssss.sss.sss.s.ssssssss.ss.ss.s.ss.sss.s.sss.sss. [ 52%]
s.ssssssss.ss.sssssssss.ssssss.s.s.ss.s......sssss..ss.s...sssssss.ss.s. [ 52%]
.s.s.ssssss.ssss.sss..ss.sss.ssss.ss.sss.ss.s.s.ss.ss.ssssss.sss.s.s..ss [ 52%]
s.ss.ss.s.ssssss..sssssss.ss.ss.s.ssssss.ssssss..ssss.s.ss.ss.ss..ss.s.s [ 53%]
.sssss.sssss..sssss.sss.s.sssssssss.sssssss.ss.ssssss..ssssssssss.sss.s. [ 53%]
s..sssssssssss.ssssssss.sssssssssssssss.ss.ss.ssssssssssssssssss...ssss. [ 53%]
.sssss...ss..sssssss..sssssssssss.sssssss.ssssssssssssssssss.ss.s.ssssss. [ 53%]
.sssssss.ss.sssssss.s.sssss.sssssss.sssssssss..sssssssssssss..sss.ss.sss [ 54%]
s..sssssssss..sssssssssss..ssssssssss.s.sssss..ssss.ssssssssssssssss.sss [ 54%]
..sssssssss.s.ss.ss.s..sss.ssssss.ssssss.sss..sssss.ssss..ssssss.s...sss [ 54%]
ssssssssss.s.ssssssssssss.ssssss.sssssssss.sssss.ssssss..sssssssssss.sss [ 54%]
.s.s.sss.s.sss.s.ss..ssssss.ss.ssssss.ssssss.ss.sssssssss.ssssss.ss.sssss. [ 55%]
ssss.sssss..sss.....ssssss...ssssssssssssssssssss...sssssssssss.....s.s. [ 55%]
s.s..ssss.sssssssssssssssssssss.ssss.ssss.Xssssssssss.ssss.sss.sssssssss [ 55%]
..sssssssssssss.ssssssss.s...sss..sssss..sss.ssss.......ssssssss.sssss.s [ 56%]
ssssss.sssssssss.s...ssss.ss.sssssss....sss.Xsssss...sssssss.sss.sssss.. [ 56%]
.sss.sssssss.sssssssssss.ssssssss.sss...ss.....sssss..ss.sssssssssssssX. [ 56%]
ssssss.sssssssssss..ss.s..sssssssssssss.Xsssssssssssssssssss.sssssss..ss [ 56%]
sssssss.s..ss.sssss....ssssss.ssssss..ssssss.ssssssssssssss.ssss.ssssX.s [ 57%]
sssssss...ssssssssssss.ss..ss..Xss.sss.ssssssss..ssss.ss..sssssssssssss. [ 57%]
......s.ssssss.sss.sssssssss.ssssssss.sssssss.sssss.sss.sss.s.sss.s.ssss [ 57%]
sss.ssX.sssss.ss.ssssssss.sss..ssX..ssssssss.sssss...ssss.......ssssssss [ 57%]
ssss..sssssssss..ss.ss.ssssssssssssss.ssss.ssssssss..sss.ssssssssssss.s. [ 58%]
.ssssssssssss..ssss.ssssssss.s.s.s..sssssss.ssssss.ssss.sssss.ss.ssssssss [ 58%]
.s.ssssss..s.ss.ss.sssssss.ss.sss.sssssssssssssssssss.ssssssss..sssss..s [ 58%]
ss.sss......ssssssssss.ssssss..sssssssss.sss.ss.ssssssssssss.ssss..s.sss [ 58%]
s.ssssssss..sssssssssss..sss..ssssss..ss..ssss.sssssss.sssssssss.sssssss. [ 59%]
sssssss...sss.sss.ssssssssssss.sss..ssss.....ssssssssssssss.sssssssss..s. [ 59%]
ssssssssssssssssssss....ssssss.ssss...sssssssss.sssssss.sss.....sssss.sss [ 59%]
ssss..ssssssssssss.sssss.sssssss.sssssss.sss..sssssssssssssss.....ss.sss [ 59%]
sssss..ss...ssss..s.sssssssss.sssssssss.ssssss.sssssssss.ssssssss.ssssss [ 60%]
sssss.sssss.s.sss.ssssssssssss.......ss.ssss.sssss..sssssssss.sssssss.ss [ 60%]
ss.sssssssssss.sss..sssss..ssssssssssssssss.ss.sssssss.ssss..sssssssss... [ 60%]
.....s.sssssssss..sssssss.ssssssssssssssss..sssssssssssssssss.ss.sssssss [ 60%]
.sss.ss..sssss.sssssssssssssss..sss.s......ssss.ss.ss..ssssssssssss.ssss [ 61%]
.ss.sssssssssss.ssssss.s...ssssssssssssss.ssssssss.sssssss..ss.ssss.ssss [ 61%]
sss..ss.sss.sssss.sss..s.ssss.sss..sssss..ssssss.ssss.ssssssssssssssssss [ 61%]
ssssssssssssssssssssssssssss..sssssssss.sssssssss.s.s.sssssss..sss.s..s. [ 62%]
.sss.ssssssssss..ss..sssssssssssssssss...sssss..ssssss.s.ss.sss.s..sss... [ 62%]
sss.ssss.ssssssssss.s..sssss..s.ssss.ssssssss...sss.ssss...sssssss.sssss [ 62%]
ss.s.sssss.sss....s...........s......................................... [ 62%]
........................................................................ [ 63%]
........................................................................ [ 63%]
........................................................................ [ 63%]
........................................................................ [ 63%]
.............................ss.s..s.sss.s.sss..s...s..sssss............ [ 64%]
.................................................s..sss..sssssss.sssssss [ 64%]
ss...ssssss....sss.sssssss.............................................. [ 64%]
.....................................................................ss. [ 64%]
sss.ss.sss.s.sssss..sss.s.ss..sssssssss.ss.ss.s..ss.ssss.s.sss.sss.sssss [ 65%]
s..s.s................................................................s.s [ 65%]
ssss..ss.sssss.ssssss.s.s.ss.ss.ss..s...sssss...sss..sss.sssss.s.ss...ss [ 65%]
sss.ss..s............................................................... [ 65%]
.......................................................................... [ 66%]
......................................................................... [ 66%]
........................................................................ [ 66%]
......................................................s.sss.ssss.s..ssss. [ 66%]
.ssssssss..ssssss.sssssss.sss.sss.sss................................... [ 67%]
........................................................................ [ 67%]
........................................................................ [ 67%]
......................................................................... [ 68%]
........................................................................ [ 68%]
........................................................................ [ 68%]
........................................................................ [ 68%]
......................................................................... [ 69%]
........................................................................ [ 69%]
........................................................................ [ 69%]
........................................................................ [ 69%]
........................................................................ [ 70%]
........................................................................ [ 70%]
......................................................................... [ 70%]
........................................................................ [ 70%]
........................................................................ [ 71%]
........................................................................ [ 71%]
......................................................................... [ 71%]
........................................................................ [ 71%]
......................................................................... [ 72%]
.......................................................................... [ 72%]
........................................................................ [ 72%]
........................................................................ [ 72%]
......................................................................... [ 73%]
........................................................................ [ 73%]
........................................................................ [ 73%]
........................................................................ [ 74%]
........................................................................ [ 74%]
........................................................................ [ 74%]
........................................................................ [ 74%]
........................................................................ [ 75%]
........................................................................ [ 75%]
........................................................................ [ 75%]
........................................................................ [ 75%]
........................................................................ [ 76%]
........................................................................ [ 76%]
......................................................................... [ 76%]
........................................................................ [ 76%]
........................................................................ [ 77%]
......................................................................... [ 77%]
........................................................................ [ 77%]
........................................................................ [ 77%]
........................................................................ [ 78%]
........................................................................ [ 78%]
........................................................................ [ 78%]
........................................................................ [ 78%]
........................................................................ [ 79%]
........................................................................ [ 79%]
........................................................................ [ 79%]
........................................................................ [ 80%]
........................................................................ [ 80%]
......................................................................... [ 80%]
........................................................................ [ 80%]
........................................................................ [ 81%]
........................................................................ [ 81%]
........................................................................ [ 81%]
........................................................................ [ 81%]
........................................................................ [ 82%]
........................................................................ [ 82%]
........................................................................ [ 82%]
........................................................................ [ 82%]
........................................................................ [ 83%]
......................................................................... [ 83%]
........................................................................ [ 83%]
........................................................................ [ 83%]
......................................................................... [ 84%]
........................................................................ [ 84%]
........................................................................ [ 84%]
........................................................................ [ 84%]
........................................................................ [ 85%]
........................................................................ [ 85%]
......................................................................... [ 85%]
......................................................................... [ 86%]
........................................................................ [ 86%]
........................................................................ [ 86%]
......................................................................... [ 86%]
........................................................................ [ 87%]
......................................................................... [ 87%]
........................................................................ [ 87%]
........................................................................ [ 87%]
........................................................................ [ 88%]
........................................................................ [ 88%]
.......................................................................... [ 88%]
........................................................................ [ 88%]
........................................................................ [ 89%]
........................................................................ [ 89%]
........................................................................ [ 89%]
........................................................................ [ 89%]
........................................................................ [ 90%]
........................................................................ [ 90%]
........................................................................ [ 90%]
........................................................................ [ 90%]
........................................................................ [ 91%]
........................................................................ [ 91%]
........................................................................ [ 91%]
......................................................................... [ 92%]
........................................................................ [ 92%]
...........s............................................................ [ 92%]
........................................................................ [ 92%]
.................................X......X........xs......x.............. [ 93%]
.....ss..s...ss.X.........X..........x......x........................... [ 93%]
........................................................................ [ 93%]
........................................................................ [ 93%]
........................................................................ [ 94%]
........................................................................ [ 94%]
........................................................................ [ 94%]
........................................................................ [ 94%]
........................................................................ [ 95%]
........................................................................ [ 95%]
........................................................................ [ 95%]
........................................................................ [ 95%]
........................................................................ [ 96%]
........................................................................ [ 96%]
........................................................................ [ 96%]
.......................................................................x [ 96%]
....F.......F..................x..x..x..xx.xx...F...x.xxF............... [ 97%]
..F...........x......F...F......x..............xx....................... [ 97%]
.FF.................x................................................... [ 97%]
........................................................................ [ 98%]
........................................................................ [ 98%]
........................................................................ [ 98%]
........................................................................ [ 98%]
........................................................................ [ 99%]
........................................................................ [ 99%]
........................................................................ [ 99%]
........................................................................ [ 99%]
...........................................                              [100%]
=================================== FAILURES ===================================
___________________ test_simple_row_groupby[True-False-by11] ___________________
[gw7] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/groupby.py", line 188, in mean
    **kwargs,
  File "/modin/modin/pandas/groupby.py", line 634, in _wrap_aggregation
    drop=self._drop,
  File "/modin/modin/data_management/functions/groupby_function.py", line 142, in caller
    axis, by._modin_frame, _map, _reduce
  File "/modin/modin/engines/base/frame/data.py", line 1704, in groupby_reduce
    1, new_partitions, lambda df: df.columns
  File "/modin/modin/engines/ray/pandas_on_ray/frame/partition_manager.py", line 94, in get_indices
    new_idx = ray.get(new_idx)
  File "/opt/conda/lib/python3.7/site-packages/ray/worker.py", line 1474, in get
    raise value.as_instanceof_cause()
ray.exceptions.RayTaskError(KeyError): �[36mray::modin.engines.ray.pandas_on_ray.frame.partition.deploy_ray_func()�[39m (pid=7354, ip=172.17.0.3)
  File "python/ray/_raylet.pyx", line 410, in ray._raylet.execute_task
  File "python/ray/_raylet.pyx", line 432, in ray._raylet.execute_task
ray.exceptions.RayTaskError: �[36mray::modin.engines.ray.pandas_on_ray.frame.axis_partition.deploy_ray_func()�[39m (pid=7354, ip=172.17.0.3)
  File "python/ray/_raylet.pyx", line 446, in ray._raylet.execute_task
  File "/modin/modin/engines/ray/pandas_on_ray/frame/axis_partition.py", line 103, in deploy_ray_func
    result = func(*args)
  File "/modin/modin/engines/base/frame/axis_partition.py", line 202, in deploy_axis_func
    result = func(dataframe, **kwargs)
  File "/modin/modin/data_management/functions/groupby_function.py", line 134, in _reduce
    return compute_reduce(df)
  File "/modin/modin/data_management/functions/groupby_function.py", line 112, in compute_reduce
    df.groupby(by=by_part, axis=axis, **groupby_args), **reduce_args
  File "/modin/modin/backends/pandas/query_compiler.py", line 2037, in <lambda>
    lambda x: x.loc[:, "sum"].sum() / x.loc[:, "count"].sum()
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 736, in apply
    result = self._python_apply_general(f)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 755, in _python_apply_general
    keys, values, not_indexed_same=mutated or self.mutated
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 1338, in _wrap_applied_output
    return self._reindex_output(result)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 2511, in _reindex_output
    output = output.drop(labels=list(g_names), axis=1)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3997, in drop
    errors=errors,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3936, in drop
    obj = obj._drop_axis(labels, axis, level=level, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3970, in _drop_axis
    new_axis = axis.drop(labels, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 5018, in drop
    raise KeyError(f"{labels[mask]} not found in axis")
KeyError: "[('col1', '') ('col5', '')] not found in axis"
___________________ test_simple_row_groupby[True-False-by12] ___________________
[gw31] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________ test_simple_row_groupby[False-False-by13] ___________________
[gw16] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________ test_simple_row_groupby[False-False-by12] ___________________
[gw36] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
___________________ test_simple_row_groupby[True-False-by13] ___________________
[gw27] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
___________________ test_simple_row_groupby[True-False-by14] ___________________
[gw0] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/groupby.py", line 188, in mean
    **kwargs,
  File "/modin/modin/pandas/groupby.py", line 634, in _wrap_aggregation
    drop=self._drop,
  File "/modin/modin/data_management/functions/groupby_function.py", line 142, in caller
    axis, by._modin_frame, _map, _reduce
  File "/modin/modin/engines/base/frame/data.py", line 1704, in groupby_reduce
    1, new_partitions, lambda df: df.columns
  File "/modin/modin/engines/ray/pandas_on_ray/frame/partition_manager.py", line 94, in get_indices
    new_idx = ray.get(new_idx)
  File "/opt/conda/lib/python3.7/site-packages/ray/worker.py", line 1474, in get
    raise value.as_instanceof_cause()
ray.exceptions.RayTaskError(KeyError): �[36mray::modin.engines.ray.pandas_on_ray.frame.partition.deploy_ray_func()�[39m (pid=8703, ip=172.17.0.3)
  File "python/ray/_raylet.pyx", line 410, in ray._raylet.execute_task
  File "python/ray/_raylet.pyx", line 432, in ray._raylet.execute_task
ray.exceptions.RayTaskError: �[36mray::modin.engines.ray.pandas_on_ray.frame.axis_partition.deploy_ray_func()�[39m (pid=8703, ip=172.17.0.3)
  File "python/ray/_raylet.pyx", line 446, in ray._raylet.execute_task
  File "/modin/modin/engines/ray/pandas_on_ray/frame/axis_partition.py", line 103, in deploy_ray_func
    result = func(*args)
  File "/modin/modin/engines/base/frame/axis_partition.py", line 202, in deploy_axis_func
    result = func(dataframe, **kwargs)
  File "/modin/modin/data_management/functions/groupby_function.py", line 134, in _reduce
    return compute_reduce(df)
  File "/modin/modin/data_management/functions/groupby_function.py", line 112, in compute_reduce
    df.groupby(by=by_part, axis=axis, **groupby_args), **reduce_args
  File "/modin/modin/backends/pandas/query_compiler.py", line 2037, in <lambda>
    lambda x: x.loc[:, "sum"].sum() / x.loc[:, "count"].sum()
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 736, in apply
    result = self._python_apply_general(f)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 755, in _python_apply_general
    keys, values, not_indexed_same=mutated or self.mutated
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 1338, in _wrap_applied_output
    return self._reindex_output(result)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 2511, in _reindex_output
    output = output.drop(labels=list(g_names), axis=1)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3997, in drop
    errors=errors,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3936, in drop
    obj = obj._drop_axis(labels, axis, level=level, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 3970, in _drop_axis
    new_axis = axis.drop(labels, errors=errors)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 5018, in drop
    raise KeyError(f"{labels[mask]} not found in axis")
KeyError: "[('col5', '') ('col4', '') ('col1', '')] not found in axis"
__________________ test_simple_row_groupby[False-False-by11] ___________________
[gw3] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________ test_simple_row_groupby[False-False-by14] ___________________
[gw5] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 277, in test_simple_row_groupby
    eval_mean(modin_groupby, pandas_groupby)
  File "/modin/modin/pandas/test/test_groupby.py", line 891, in eval_mean
    modin_df_almost_equals_pandas(modin_groupby.mean(), pandas_groupby.mean())
  File "/modin/modin/pandas/test/test_groupby.py", line 40, in modin_df_almost_equals_pandas
    difference = modin_df - pandas_df
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 757, in f
    return _frame_arith_method_with_reindex(self, other, op)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 727, in _frame_arith_method_with_reindex
    result = op(new_left, new_right)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/ops/__init__.py", line 766, in f
    left, right = self.align(other, join="outer", level=level, copy=False)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py", line 3834, in align
    broadcast_axis=broadcast_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8474, in align
    fill_axis=fill_axis,
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py", line 8513, in _align_frame
    other.index, how=join, level=level, return_indexers=True
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3257, in join
    return self._join_multi(other, how=how, return_indexers=return_indexers)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 3361, in _join_multi
    raise ValueError("cannot join with no overlapping index names")
ValueError: cannot join with no overlapping index names
__________________________ test_agg_exceptions[mean] ___________________________
[gw7] linux -- Python 3.7.7 /opt/conda/bin/python
Traceback (most recent call last):
  File "/modin/modin/pandas/test/utils.py", line 607, in execute_callable
    pd_result = fn(pandas_df, **pd_kwargs)
  File "/modin/modin/pandas/test/test_groupby.py", line 66, in <lambda>
    operation, *args, **kwargs
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 928, in aggregate
    result, how = self._aggregate(func, *args, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/base.py", line 311, in _aggregate
    return self._try_aggregate_string_function(arg, *args, **kwargs), None
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/base.py", line 267, in _try_aggregate_string_function
    return f(*args, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 1226, in mean
    "mean", alt=lambda x, axis: Series(x).mean(**kwargs), **kwargs
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 994, in _cython_agg_general
    how, alt=alt, numeric_only=numeric_only, min_count=min_count
  File "/opt/conda/lib/python3.7/site-packages/pandas/core/groupby/generic.py", line 1095, in _cython_agg_blocks
    raise DataError("No numeric types to aggregate")
pandas.core.base.DataError: No numeric types to aggregate

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/modin/modin/pandas/test/test_groupby.py", line 1136, in test_agg_exceptions
    eval_aggregation(*create_test_dfs(data), operation=operation)
  File "/modin/modin/pandas/test/test_groupby.py", line 69, in eval_aggregation
    **kwargs,
  File "/modin/modin/pandas/test/utils.py", line 635, in eval_general
    operation, md_kwargs=md_kwargs, pd_kwargs=pd_kwargs, inplace=__inplace__
  File "/modin/modin/pandas/test/utils.py", line 613, in execute_callable
    repr(fn(modin_df, **md_kwargs))
  File "/opt/conda/lib/python3.7/site-packages/_pytest/python_api.py", line 744, in __exit__
    fail(self.message)
  File "/opt/conda/lib/python3.7/site-packages/_pytest/outcomes.py", line 156, in fail
    raise Failed(msg=msg, pytrace=pytrace)
Failed: DID NOT RAISE <class 'Exception'>

----------- coverage: platform linux, python 3.7.7-final-0 -----------
Coverage XML written to file coverage.xml

=========================== short test summary info ============================
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by11]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by12]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by13]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by12]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by13]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[True-False-by14]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by11]
FAILED modin/pandas/test/test_groupby.py::test_simple_row_groupby[False-False-by14]
FAILED modin/pandas/test/test_groupby.py::test_agg_exceptions[mean] - Failed:...
= 9 failed, 22189 passed, 3811 skipped, 598 xfailed, 1061 xpassed, 42568 warnings in 1449.23s (0:24:09) =


<b>Remaining output truncated<b>


@devin-petersohn
Copy link
Collaborator Author

Local testing shows that the following is the fastest approach.

df.groupby(by).sum() / df.groupby(by).count()  # 2 groupby and 1 join

This is strange because it is faster than a single groupby on local testing data. More understanding is required to see what the implications are for data of different shapes.

@YarShev
Copy link
Collaborator

YarShev commented Jan 20, 2022

@devin-petersohn, should this PR be closed since we have #3586?

@devin-petersohn
Copy link
Collaborator Author

We can close this

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants