The goal of bieulergy is to facilitate interactive network biology in R, specifically the analysis, visualization, and comparison of biological regulatory networks. This includes building out R command-line functions geared towards biological networks as well as interactive analysis through R Shiny.
Please visit the documentation for a comprehensive overview.
Feel free to bring your questions, comments, or feedback to our gitter channel.
We recommend the latest version of R (>= 4.0.0) and installation directly from Github.
devtools::install_github("montilab/bieulergy")
Networks are represented as interactive.omics.network
objects with
node/edge-level properties for mapping gene/protein symbols, centrality
measures, and integrating multi-omics data layers into your analysis.
These are R6 objects that extend omics.network
objects to facilitate
interactive analyses. You can find more information about
omics.network
objects
here.
library(bieulergy)
library(ndexr)
ndex <- function(uuid) {
ndexcon <- ndexr::ndex_connect()
data <- ndexr::ndex_get_network(ndexcon, uuid)
mat <- as.matrix(data$edges)
storage.mode(mat) <- "character"
ig <- igraph::graph_from_edgelist(mat[,c("s", "t")], directed=FALSE)
ids <- data$nodes[match(as.numeric(igraph::as_ids(V(ig))), data$nodes[,"@id"]), "n"]
V(ig)$label <- ids
return(ig)
}
# Global landscape of HIV–human protein complexes.
# Jaeger et al. Nature. 2011 Dec 21; 481(7381): 365–370
# @UUID: 1cbe89ab-fb5d-11e9-bb65-0ac135e8bacf
# https://www.ndexbio.org/viewer/networks/1cbe89ab-fb5d-11e9-bb65-0ac135e8bacf
ig <- ndex("1cbe89ab-fb5d-11e9-bb65-0ac135e8bacf")
ionet <- bieulergy::create.ionet(ig, type="ig")
str(ionet$properties)
List of 4
$ nodes : int 453
$ edges : num 499
$ density : num 0.00487
$ clustering: num 0
head(ionet$nodes)
id label symbol degree eigen betweenness stress
942 942 942 942 50 0.55159754 6204.11111 42589
1022 1022 1022 1022 1 0.05997156 0.00000 0
1020 1020 1020 1020 1 0.05997156 0.00000 0
792 792 792 792 2 0.16869497 85.44444 1602
1017 1017 1017 1017 1 0.05997156 0.00000 0
1015 1015 1015 1015 1 0.05997156 0.00000 0
Graph and node properties are pre-computed for fast interactive rendering and analysis.
head(ionet$pca$var$contrib)
Dim.1 Dim.2 Dim.3 Dim.4
degree 26.07208 4.763222 6.774052e+01 1.424178812
eigen 15.05581 84.934785 5.262416e-04 0.008874053
betweenness 28.87808 5.366217 2.387746e+01 41.878247044
stress 29.99403 4.935776 8.381493e+00 56.688700091
Many of the downstream functions expect one or more
interactive.omics.network
objects for comparative analyses.
# Simulated networks from yeast data by Kristina Hanspers
# @UUID: 7831a991-5767-11ea-bfdc-0ac135e8bacf
# https://www.ndexbio.org/viewer/networks/7831a991-5767-11ea-bfdc-0ac135e8bacf
yeast.networks <- readRDS(file.path(system.file("extdata", package="bieulergy"), "yeast-networks.rds"))
is(yeast.networks, "list")
[1] TRUE
sapply(yeast.networks, is)
Yeast_1 Yeast_2 Yeast_3
"interactive.omics.network" "interactive.omics.network" "interactive.omics.network"
yeast.1 <- yeast.networks$Yeast_1
head(yeast.1$nodes)
id symbol is_tf lfc_mrna snp_frq label degree eigen betweenness stress
749 749 MTH1 FALSE -0.4385177 0.035319994 749 2 2.661820e-07 247.000 1361
751 751 SNF3 FALSE 0.1285503 0.003035238 751 1 5.257070e-08 0.000 0
109 109 LSM8 FALSE -0.5849400 0.062844766 109 7 1.295192e-06 3680.751 23693
743 743 ASN1 FALSE 1.1166966 0.229042875 743 1 2.299056e-04 0.000 0
692 692 SPC24 FALSE 0.2306554 0.009771783 692 3 1.164084e-03 493.000 617
740 740 GIP2 FALSE -0.5743279 0.060585153 740 2 2.958689e-03 1356.000 5772
Here is an example of plotting the top nodes by degree centrality across networks.
bieulergy::networks.tnodes(networks=yeast.networks,
metric="degree",
symbols=TRUE,
size=5,
top=10)
Bieulergy is an R package and a Shiny application. Some functionality is exclusive to one or the other but there is a lot of overlap. The Shiny application is ideal for rapid analysis and comparison while the command line is more suitable for advanced custom analyses.
bieulergy::run.shiny()
Or run with Docker…
git clone https://github.com/montilab/bieulergy
cd bieulergy
docker build --tag montilab/bieulergy:latest .
Launch the package within a Docker environment..
docker run -d -p 8787:8787 -e PASSWORD=bieulergy montilab/bieulergy:latest
Run the Shiny application. Go to http://localhost:8787 in the browser and you will be promted:
username: rstudio
password: bieulergy
Then enter the following:
library(bieulergy)
bieulergy::run.shiny()
Please refer to the documentation for more examples.