2023-07-26
: We released the implementation of Real-Time AV-ASR.
This repository is an open-sourced framework for speech recognition, with a primary focus on visual speech (lip-reading). It is designed for end-to-end training, aiming to deliver state-of-the-art models and enable reproducibility on audio-visual speech benchmarks.
By using this repository, you can achieve a word error rate (WER) of 20.3% for visual speech recognition (VSR) and 1.0% for audio speech recognition (ASR) on LRS3.
- Set up environment:
conda create -y -n auto_avsr python=3.8
conda activate auto_avsr
- Clone repository:
git clone https://github.com/mpc001/auto_avsr
cd auto_avsr
- Install fairseq within the repository:
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./
cd ..
- Install PyTorch (tested pytorch version: v2.0.1) and other packages:
pip install torch torchvision torchaudio
pip install pytorch-lightning==1.5.10
pip install sentencepiece
pip install av
pip install hydra-core --upgrade
- Install ffmpeg:
conda install "ffmpeg<5" -c conda-forge
- Prepare the dataset. See the instructions in the preparation folder.
python train.py exp_dir=[exp_dir] \
exp_name=[exp_name] \
data.modality=[modality] \
data.dataset.root_dir=[root_dir] \
data.dataset.train_file=[train_file] \
trainer.num_nodes=[num_nodes] \
Required arguments
exp_dir
: Directory to save checkpoints and logs to.exp_name
: Experiment name. Location of checkpoints is[exp_dir]
/[exp_name]
.data.modality
: Type of input modality, valid values:video
andaudio
.data.dataset.root_dir
: Root directory of preprocessed dataset, default:null
.data.dataset.train_file
: Filename of training label list, default:lrs3_train_transcript_lengths_seg24s.csv
.trainer.num_nodes
: Number of machines used, default: 1.trainer.resume_from_checkpoint
: Path of the checkpoint from which training is resumed, default:null
.
Optional arguments
data.dataset.val_file
: Filename of validation label list, default:lrs3_test_transcript_lengths_seg24s.csv
.pretrained_model_path
: Path to the pre-trained model, default:null
.transfer_frontend
Flag to load the weights of front-end module, works withpretrained_model_path
.transfer_encoder
Flag to load the weights of encoder, works withpretrained_model_path
.trainer.max_epochs
: Number of epochs, default: 75.trainer.gpus
: Number of GPUs to train on on each machine, default: -1, which use all gpus.data.max_frames
: Maximal number of frames in a batch, default: 1800.optimizer.lr
: Learning rate, default: 0.001.
Note
- For lrs3, start by training from scratch on a subset (23h, max duration=4 seconds) at a learning rate of 0.0002 (see model-zoo). Then fine-tune on the full set with a learning rate of 0.001. A script for subset creation is available here. For training new datasets, please refer to instruction.
- If you want to monitor the training process, customise logger within
pytorch_lightning.Trainer()
. - To maximize resource utilization, set
data.max_frames
to the largest to fit into your GPU memory.
python eval.py data.modality=[modality] \
data.dataset.root_dir=[root_dir] \
data.dataset.test_file=[test_file] \
pretrained_model_path=[pretrained_model_path] \
Required arguments
data.modality
: Type of input modality, valid values:video
,audio
andaudiovisual
.data.dataset.root_dir
: Root directory of preprocessed dataset, default:null
.data.dataset.test_file
: Filename of testing label list, default:lrs3_test_transcript_lengths_seg24s.csv
.pretrained_model_path
: Path to the pre-trained model, set to[exp_dir]/[exp_name]/model_avg_10.pth
, default:null
.
Optional arguments
decode.snr_target=[snr_target]
: Level of signal-to-noise ratio (SNR), default: 999999.
Want to see how our asr/vsr model performs on your audio/video? Just run this command:
python demo.py data.modality=[modality] \
pretrained_model_path=[pretrained_model_path] \
file_path=[file_path]
Required arguments
data.modality
: Type of input modality, valid values:video
andaudio
.pretrained_model_path
: Path to the pre-trained model.file_path
: Path to the file for testing.
We provide audio-only, visual-only and audio-visual models for lrs3.
LRS3
Model | Training data (h) | WER [%] | MD5 |
---|---|---|---|
vsr_trlrs3_23h_base.pth |
23 | 96.6 | 50c88 |
vsr_trlrs3_base.pth |
438 | 36.7 | ea3ec |
vsr_trlrs3vox2_base.pth |
1759 | 25.0 | 0a126 |
vsr_trlrwlrs2lrs3vox2avsp_base.pth |
3448 | 20.3 | a896f |
asr_trlrs3_23h_base.pth |
23 | 72.5 | 87d45 |
asr_trlrs3_base.pth |
438 | 2.04 | 4fa87 |
asr_trlrs3vox2_base.pth |
1759 | 1.07 | 7beab |
asr_trlrwlrs2lrs3vox2avsp_base.pth |
3448 | 0.99 | dc759 |
avsr_trlrwlrs2lrs3vox2avsp_base.pth |
3448 | 0.93 | 6b3c5 |
If you find this repository helpful, please consider citing our work:
@inproceedings{ma2023auto,
author={Ma, Pingchuan and Haliassos, Alexandros and Fernandez-Lopez, Adriana and Chen, Honglie and Petridis, Stavros and Pantic, Maja},
booktitle={IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={Auto-AVSR: Audio-Visual Speech Recognition with Automatic Labels},
year={2023},
pages={1-5},
doi={10.1109/ICASSP49357.2023.10096889}
}
This repository is built using the espnet, fairseq, raven and avhubert repositories.
Code is Apache 2.0 licensed. The pre-trained models provided in this repository may have their own licenses or terms and conditions derived from the dataset used for training.
Contributions are welcome; feel free to create a PR or email me:
[Pingchuan Ma](pingchuan.ma16[at]imperial.ac.uk)