Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: correct gallery/index.yaml #4384

Merged
merged 1 commit into from
Dec 14, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion gallery/index.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -2022,7 +2022,7 @@
name: "fusechat-qwen-2.5-7b-instruct"
icon: https://huggingface.co/FuseAI/FuseChat-Qwen-2.5-7B-Instruct/resolve/main/FuseChat-3.0.png
urls:
-https://huggingface.co/FuseAI/FuseChat-Qwen-2.5-7B-Instruct
- https://huggingface.co/FuseAI/FuseChat-Qwen-2.5-7B-Instruct
- https://huggingface.co/bartowski/FuseChat-Qwen-2.5-7B-Instruct-GGUF
description: |
We present FuseChat-3.0, a series of models crafted to enhance performance by integrating the strengths of multiple source LLMs into more compact target LLMs. To achieve this fusion, we utilized four powerful source LLMs: Gemma-2-27B-It, Mistral-Large-Instruct-2407, Qwen-2.5-72B-Instruct, and Llama-3.1-70B-Instruct. For the target LLMs, we employed three widely-used smaller models—Llama-3.1-8B-Instruct, Gemma-2-9B-It, and Qwen-2.5-7B-Instruct—along with two even more compact models—Llama-3.2-3B-Instruct and Llama-3.2-1B-Instruct. The implicit model fusion process involves a two-stage training pipeline comprising Supervised Fine-Tuning (SFT) to mitigate distribution discrepancies between target and source LLMs, and Direct Preference Optimization (DPO) for learning preferences from multiple source LLMs. The resulting FuseChat-3.0 models demonstrated substantial improvements in tasks related to general conversation, instruction following, mathematics, and coding. Notably, when Llama-3.1-8B-Instruct served as the target LLM, our fusion approach achieved an average improvement of 6.8 points across 14 benchmarks. Moreover, it showed significant improvements of 37.1 and 30.1 points on instruction-following test sets AlpacaEval-2 and Arena-Hard respectively. We have released the FuseChat-3.0 models on Huggingface, stay tuned for the forthcoming dataset and code.
Expand Down
Loading