Skip to content

Commit

Permalink
COMPAT: 32-bit compat fixes mainly in testing
Browse files Browse the repository at this point in the history
  • Loading branch information
jreback committed Jul 9, 2016
1 parent f95576b commit 5701c69
Show file tree
Hide file tree
Showing 13 changed files with 104 additions and 82 deletions.
2 changes: 1 addition & 1 deletion pandas/core/internals.py
Original file line number Diff line number Diff line change
Expand Up @@ -3085,7 +3085,7 @@ def reduction(self, f, axis=0, consolidate=True, transposed=False,
# compute the orderings of our original data
if len(self.blocks) > 1:

indexer = np.empty(len(self.axes[0]), dtype='int64')
indexer = np.empty(len(self.axes[0]), dtype=np.intp)
i = 0
for b in self.blocks:
for j in b.mgr_locs:
Expand Down
7 changes: 4 additions & 3 deletions pandas/tests/indexes/test_datetimelike.py
Original file line number Diff line number Diff line change
Expand Up @@ -534,9 +534,9 @@ def test_get_loc(self):
# time indexing
idx = pd.date_range('2000-01-01', periods=24, freq='H')
tm.assert_numpy_array_equal(idx.get_loc(time(12)),
np.array([12], dtype=np.int64))
np.array([12]), check_dtype=False)
tm.assert_numpy_array_equal(idx.get_loc(time(12, 30)),
np.array([], dtype=np.int64))
np.array([]), check_dtype=False)
with tm.assertRaises(NotImplementedError):
idx.get_loc(time(12, 30), method='pad')

Expand Down Expand Up @@ -587,7 +587,8 @@ def test_time_loc(self): # GH8667
ts = pd.Series(np.random.randn(n), index=idx)
i = np.arange(start, n, step)

tm.assert_numpy_array_equal(ts.index.get_loc(key), i)
tm.assert_numpy_array_equal(ts.index.get_loc(key), i,
check_dtype=False)
tm.assert_series_equal(ts[key], ts.iloc[i])

left, right = ts.copy(), ts.copy()
Expand Down
8 changes: 4 additions & 4 deletions pandas/tests/indexes/test_multi.py
Original file line number Diff line number Diff line change
Expand Up @@ -1750,12 +1750,12 @@ def test_reindex_level(self):
exp_index2 = self.index.join(idx, level='second', how='left')

self.assertTrue(target.equals(exp_index))
exp_indexer = np.array([0, 2, 4], dtype=np.int64)
tm.assert_numpy_array_equal(indexer, exp_indexer)
exp_indexer = np.array([0, 2, 4])
tm.assert_numpy_array_equal(indexer, exp_indexer, check_dtype=False)

self.assertTrue(target2.equals(exp_index2))
exp_indexer2 = np.array([0, -1, 0, -1, 0, -1], dtype=np.int64)
tm.assert_numpy_array_equal(indexer2, exp_indexer2)
exp_indexer2 = np.array([0, -1, 0, -1, 0, -1])
tm.assert_numpy_array_equal(indexer2, exp_indexer2, check_dtype=False)

assertRaisesRegexp(TypeError, "Fill method not supported",
self.index.reindex, self.index, method='pad',
Expand Down
24 changes: 14 additions & 10 deletions pandas/tests/series/test_analytics.py
Original file line number Diff line number Diff line change
Expand Up @@ -262,7 +262,7 @@ def test_kurt(self):
self.assertTrue((df.kurt() == 0).all())

def test_argsort(self):
self._check_accum_op('argsort')
self._check_accum_op('argsort', check_dtype=False)
argsorted = self.ts.argsort()
self.assertTrue(issubclass(argsorted.dtype.type, np.integer))

Expand All @@ -289,8 +289,10 @@ def test_argsort_stable(self):
mexpected = np.argsort(s.values, kind='mergesort')
qexpected = np.argsort(s.values, kind='quicksort')

self.assert_series_equal(mindexer, Series(mexpected))
self.assert_series_equal(qindexer, Series(qexpected))
self.assert_series_equal(mindexer, Series(mexpected),
check_dtype=False)
self.assert_series_equal(qindexer, Series(qexpected),
check_dtype=False)
self.assertFalse(np.array_equal(qindexer, mindexer))

def test_cumsum(self):
Expand Down Expand Up @@ -487,10 +489,11 @@ def testit():
except ImportError:
pass

def _check_accum_op(self, name):
def _check_accum_op(self, name, check_dtype=True):
func = getattr(np, name)
self.assert_numpy_array_equal(func(self.ts).values,
func(np.array(self.ts)))
func(np.array(self.ts)),
check_dtype=check_dtype)

# with missing values
ts = self.ts.copy()
Expand All @@ -499,7 +502,8 @@ def _check_accum_op(self, name):
result = func(ts)[1::2]
expected = func(np.array(ts.valid()))

self.assert_numpy_array_equal(result.values, expected)
self.assert_numpy_array_equal(result.values, expected,
check_dtype=False)

def test_compress(self):
cond = [True, False, True, False, False]
Expand Down Expand Up @@ -1360,13 +1364,13 @@ def test_searchsorted_numeric_dtypes_scalar(self):
self.assertEqual(r, e)

r = s.searchsorted([30])
e = np.array([2], dtype=np.int64)
e = np.array([2], dtype=np.intp)
tm.assert_numpy_array_equal(r, e)

def test_searchsorted_numeric_dtypes_vector(self):
s = Series([1, 2, 90, 1000, 3e9])
r = s.searchsorted([91, 2e6])
e = np.array([3, 4], dtype=np.int64)
e = np.array([3, 4], dtype=np.intp)
tm.assert_numpy_array_equal(r, e)

def test_search_sorted_datetime64_scalar(self):
Expand All @@ -1380,14 +1384,14 @@ def test_search_sorted_datetime64_list(self):
s = Series(pd.date_range('20120101', periods=10, freq='2D'))
v = [pd.Timestamp('20120102'), pd.Timestamp('20120104')]
r = s.searchsorted(v)
e = np.array([1, 2], dtype=np.int64)
e = np.array([1, 2], dtype=np.intp)
tm.assert_numpy_array_equal(r, e)

def test_searchsorted_sorter(self):
# GH8490
s = Series([3, 1, 2])
r = s.searchsorted([0, 3], sorter=np.argsort(s))
e = np.array([0, 2], dtype=np.int64)
e = np.array([0, 2], dtype=np.intp)
tm.assert_numpy_array_equal(r, e)

def test_is_unique(self):
Expand Down
6 changes: 4 additions & 2 deletions pandas/tests/test_algos.py
Original file line number Diff line number Diff line change
Expand Up @@ -702,12 +702,14 @@ def test_unique_label_indices():
left = unique_label_indices(a)
right = np.unique(a, return_index=True)[1]

tm.assert_numpy_array_equal(left, right)
tm.assert_numpy_array_equal(left, right,
check_dtype=False)

a[np.random.choice(len(a), 10)] = -1
left = unique_label_indices(a)
right = np.unique(a, return_index=True)[1][1:]
tm.assert_numpy_array_equal(left, right)
tm.assert_numpy_array_equal(left, right,
check_dtype=False)


def test_rank():
Expand Down
23 changes: 13 additions & 10 deletions pandas/tests/test_categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -515,17 +515,20 @@ def f():
def test_argsort(self):
c = Categorical([5, 3, 1, 4, 2], ordered=True)

expected = np.array([2, 4, 1, 3, 0], dtype=np.int64)
tm.assert_numpy_array_equal(c.argsort(ascending=True), expected)
expected = np.array([2, 4, 1, 3, 0])
tm.assert_numpy_array_equal(c.argsort(ascending=True), expected,
check_dtype=False)

expected = expected[::-1]
tm.assert_numpy_array_equal(c.argsort(ascending=False), expected)
tm.assert_numpy_array_equal(c.argsort(ascending=False), expected,
check_dtype=False)

def test_numpy_argsort(self):
c = Categorical([5, 3, 1, 4, 2], ordered=True)

expected = np.array([2, 4, 1, 3, 0], dtype=np.int64)
tm.assert_numpy_array_equal(np.argsort(c), expected)
expected = np.array([2, 4, 1, 3, 0])
tm.assert_numpy_array_equal(np.argsort(c), expected,
check_dtype=False)

msg = "the 'kind' parameter is not supported"
tm.assertRaisesRegexp(ValueError, msg, np.argsort,
Expand Down Expand Up @@ -1505,7 +1508,7 @@ def test_searchsorted(self):
# Single item array
res = c1.searchsorted(['bread'])
chk = s1.searchsorted(['bread'])
exp = np.array([1], dtype=np.int64)
exp = np.array([1], dtype=np.intp)
self.assert_numpy_array_equal(res, exp)
self.assert_numpy_array_equal(res, chk)

Expand All @@ -1514,21 +1517,21 @@ def test_searchsorted(self):
# np.array.searchsorted()
res = c1.searchsorted('bread')
chk = s1.searchsorted('bread')
exp = np.array([1], dtype=np.int64)
exp = np.array([1], dtype=np.intp)
self.assert_numpy_array_equal(res, exp)
self.assert_numpy_array_equal(res, chk)

# Searching for a value that is not present in the Categorical
res = c1.searchsorted(['bread', 'eggs'])
chk = s1.searchsorted(['bread', 'eggs'])
exp = np.array([1, 4], dtype=np.int64)
exp = np.array([1, 4], dtype=np.intp)
self.assert_numpy_array_equal(res, exp)
self.assert_numpy_array_equal(res, chk)

# Searching for a value that is not present, to the right
res = c1.searchsorted(['bread', 'eggs'], side='right')
chk = s1.searchsorted(['bread', 'eggs'], side='right')
exp = np.array([3, 4], dtype=np.int64) # eggs before milk
exp = np.array([3, 4], dtype=np.intp) # eggs before milk
self.assert_numpy_array_equal(res, exp)
self.assert_numpy_array_equal(res, chk)

Expand All @@ -1538,7 +1541,7 @@ def test_searchsorted(self):
chk = s2.searchsorted(['bread', 'eggs'], side='right',
sorter=[0, 1, 2, 3, 5, 4])
# eggs after donuts, after switching milk and donuts
exp = np.array([3, 5], dtype=np.int64)
exp = np.array([3, 5], dtype=np.intp)
self.assert_numpy_array_equal(res, exp)
self.assert_numpy_array_equal(res, chk)

Expand Down
16 changes: 8 additions & 8 deletions pandas/tests/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -5934,49 +5934,49 @@ def test_nargsort(self):
result = _nargsort(items, kind='mergesort', ascending=True,
na_position='last')
exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.int64))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

# mergesort, ascending=True, na_position='first'
result = _nargsort(items, kind='mergesort', ascending=True,
na_position='first')
exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.int64))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

# mergesort, ascending=False, na_position='last'
result = _nargsort(items, kind='mergesort', ascending=False,
na_position='last')
exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.int64))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

# mergesort, ascending=False, na_position='first'
result = _nargsort(items, kind='mergesort', ascending=False,
na_position='first')
exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.int64))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

# mergesort, ascending=True, na_position='last'
result = _nargsort(items2, kind='mergesort', ascending=True,
na_position='last')
exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.int64))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

# mergesort, ascending=True, na_position='first'
result = _nargsort(items2, kind='mergesort', ascending=True,
na_position='first')
exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.int64))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

# mergesort, ascending=False, na_position='last'
result = _nargsort(items2, kind='mergesort', ascending=False,
na_position='last')
exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.int64))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

# mergesort, ascending=False, na_position='first'
result = _nargsort(items2, kind='mergesort', ascending=False,
na_position='first')
exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.int64))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

def test_datetime_count(self):
df = DataFrame({'a': [1, 2, 3] * 2,
Expand Down
3 changes: 2 additions & 1 deletion pandas/tools/merge.py
Original file line number Diff line number Diff line change
Expand Up @@ -436,7 +436,8 @@ def _merger(x, y):
# if we DO have duplicates, then
# we cannot guarantee order

sorter = np.concatenate([groupby.indices[g] for g, _ in groupby])
sorter = com._ensure_platform_int(
np.concatenate([groupby.indices[g] for g, _ in groupby]))
if len(result) != len(sorter):
if check_duplicates:
raise AssertionError("invalid reverse grouping")
Expand Down
12 changes: 6 additions & 6 deletions pandas/tools/tests/test_merge.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,8 +91,8 @@ def test_cython_left_outer_join(self):
exp_rs = exp_rs.take(exp_ri)
exp_rs[exp_ri == -1] = -1

self.assert_numpy_array_equal(ls, exp_ls)
self.assert_numpy_array_equal(rs, exp_rs)
self.assert_numpy_array_equal(ls, exp_ls, check_dtype=False)
self.assert_numpy_array_equal(rs, exp_rs, check_dtype=False)

def test_cython_right_outer_join(self):
left = a_([0, 1, 2, 1, 2, 0, 0, 1, 2, 3, 3], dtype=np.int64)
Expand All @@ -117,8 +117,8 @@ def test_cython_right_outer_join(self):
exp_rs = exp_rs.take(exp_ri)
exp_rs[exp_ri == -1] = -1

self.assert_numpy_array_equal(ls, exp_ls)
self.assert_numpy_array_equal(rs, exp_rs)
self.assert_numpy_array_equal(ls, exp_ls, check_dtype=False)
self.assert_numpy_array_equal(rs, exp_rs, check_dtype=False)

def test_cython_inner_join(self):
left = a_([0, 1, 2, 1, 2, 0, 0, 1, 2, 3, 3], dtype=np.int64)
Expand All @@ -141,8 +141,8 @@ def test_cython_inner_join(self):
exp_rs = exp_rs.take(exp_ri)
exp_rs[exp_ri == -1] = -1

self.assert_numpy_array_equal(ls, exp_ls)
self.assert_numpy_array_equal(rs, exp_rs)
self.assert_numpy_array_equal(ls, exp_ls, check_dtype=False)
self.assert_numpy_array_equal(rs, exp_rs, check_dtype=False)

def test_left_outer_join(self):
joined_key2 = merge(self.df, self.df2, on='key2')
Expand Down
5 changes: 3 additions & 2 deletions pandas/tools/tests/test_tile.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,9 @@ class TestCut(tm.TestCase):
def test_simple(self):
data = np.ones(5)
result = cut(data, 4, labels=False)
desired = np.array([1, 1, 1, 1, 1], dtype=np.int64)
tm.assert_numpy_array_equal(result, desired)
desired = np.array([1, 1, 1, 1, 1])
tm.assert_numpy_array_equal(result, desired,
check_dtype=False)

def test_bins(self):
data = np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1])
Expand Down
Loading

0 comments on commit 5701c69

Please sign in to comment.