Skip to content

Financial applications focusing on portfolio management for Python

License

Notifications You must be signed in to change notification settings

nathanramoscfa/pyfinlab

Repository files navigation

PyFinanceLab

PyFinanceLab is a library which brings together various financial applications into one package for financial research and portfolio management. Navigate to the jupyter folder to see usage examples.

PyFinanceLab is in alpha development.

Features

  • Data API Wrapper The data API wrapper makes it easy to switch between yfinance (free to use) and tia (Bloomberg Professional Services subscription) Python libraries for pulling financial data.

  • Portfolio Optimization Compute an efficient frontier of portfolios based on any one of 7 risk models and 3 return models from the PyPortfolioOpt library.

  • Multifactor Scoring Model Analyze and rank stocks according to factors assumed to have excess returns and violate the efficient market hypothesis.

  • Optimizer Backtest Backtest optimized portfolios and compute performance charts, efficient frontier plots, and performance statistics.

  • Excel Report Generation Show your optimizer results and backtest in a nicely formatted Excel file for further analysis.

  • Stock-to-Flow Modeling Generate and hypothesis test stock-to-flow models for 16 cryptocurrencies with data updated daily.

Installation

It is recommended you use Anaconda for this installation process. Anaconda Individual Edition is appropriate for most users. Make sure you have installed Microsoft C++ Build Tools installed on your computer. If you encounter any errors with, "Microsoft Visual C++ 14.0 is required", try following these instructions to download and install Microsoft Visual C++ 14.0. If you get an error installing any of the packages below, try to install the problematic package separately.

Setting Up Anaconda Environment for PyFinLab

Open Anaconda Prompt and create a new environment called pyfinlab.

conda create -n pyfinlab python=3.8 git

Activate the new pyfinlab environment.

conda activate pyfinlab

Install the following conda packages using conda-forge channel.

conda install -c conda-forge blpapi jupyterlab xlsxwriter tqdm

Install the following conda packages using anaconda channel.

conda install -c anaconda xlsxwriter statsmodels

Install the following GitHub repositories one at a time.

pip install git+https://github.com/PaulMest/tia.git#egg=tia
pip install git+https://github.com/nathanramoscfa/ffn.git

Install the following packages using pip.

pip install --upgrade-strategy only-if-needed yfinance tqdm openpyxl patsy openpyxl bt PyPortfolioOpt

Installing PyFinLab

Unless you know what you are doing, it is recommended to install pyfinlab either using pip or cloning from Github, but not both in order to prevent conflicts arising from having pyfinlab installed in two locations on your computer. The developer version is the most up-to-date.

Developer Version (Most Up-to-Date)

Clone the GitHub repository to a project directory of your choosing.

git clone git+https://github.com/nathanramoscfa/pyfinlab.git

PyPI (pip)

Install pyfinlab to your environment's site-packages folder with the following command.

pip install pyfinlab

Roadmap

Future development will include:

  • Documentation and Testing

    Documentation and testing will be published as this Python library is further developed.

About

Financial applications focusing on portfolio management for Python

Resources

License

Stars

Watchers

Forks

Packages

No packages published