Skip to content

Local Dataflow Runner for the googlecloud-to-neo4j template

License

Notifications You must be signed in to change notification settings

neo4j-contrib/local-dataflow-runner

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Run your googlecloud-to-neo4j pipeline locally

Prerequisites

  • Java 21
  • Apache Maven
  • Docker
  • GCP account with Dataflow enabled
  • GCS bucket accessible for writes
  • gcloud CLI

Building the CLI

First, build the googlecloud-to-neo4j template locally:

git clone git@github.com:GoogleCloudPlatform/DataflowTemplates.git
mvn --file DataflowTemplates/pom.xml --also-make --projects v2/googlecloud-to-neo4j install -DskipTests -Djib.skip

Then, go back to this project and run:

mvn package

You should then be able to run:

java -jar target/local-runner-1.0-SNAPSHOT-shaded.jar --help

And see some output similar to:

Usage: local-dataflow [-hV] -b=<bucket> [-i=<checkInterval>] -p=<project>
                      -r=<region> -s=<spec> [-t=<maxTimeout>]
                      [-c=<countQueryChecks>]...
  -b, --bucket=<bucket>     GCS bucket
  -c, --count-query-check=<countQueryChecks>
                            Count query checks (syntax: "<count>:<Cypher count
                              query>" with a single "count" column)
  -h, --help                Show this help message and exit.
  -i, --interval-check-duration=<checkInterval>
                            Execution completion check interval
  -p, --project=<project>   GCP project
  -r, --region=<region>     GCP region
  -s, --spec=<spec>         Path to local googlecloud-to-neo4j spec file
  -t, --max-timeout=<maxTimeout>
                            Execution timeout
  -V, --version             Print version information and exit.

Quick start

For the guide, you will need:

  • to have built the CLI locally (see previous section)
  • to know your GCP project name
  • to pick a GCS bucket name accessible for writes
  • a running Docker Daemon
  • to have set up Google Application Default Credentials

Create a local spec file, let's save it somewhere (the rest of the guide assumes /path/to/spec.json):

{
  "sources": [
    {
      "type": "text",
      "name": "persons",
      "ordered_field_names": "id",
      "data": [
        ["person0"],
        ["person1"],
        ["person2"],
        ["person3"],
        ["person4"]
      ]
    }
  ],
  "targets": [
    {
      "node": {
        "source": "persons",
        "name": "person import",
        "mode": "merge",
        "mappings": {
          "labels": [
            "\"Person\""
          ],
          "properties": {
            "keys": [
              {"id": "id"}
            ]
          }
        }
      }
    }
  ]
}

If not already set up google authentication through gcloud CLI, run

gcloud auth application-default login

Assuming the current location is the root of this project, now run:

java -jar ./target/local-runner-1.0-SNAPSHOT-shaded.jar \
  --project=<YOUR GCP PROJECT> \
  --region=<YOUR GCP REGION> \
  --bucket=<YOUR GCS BUCKET> \
  --spec=/path/to/spec.json

And that's it! A local Neo4j instance is going to be started via Docker and the pipeline will run directly on your machine. All logs are sent to standard output directly. Once the execution is done, the container is shut down.

You can also specify Cypher query checks to make sure the data is created in the way you expect:

java -jar ./target/local-runner-1.0-SNAPSHOT-shaded.jar \
  --project=<YOUR GCP PROJECT> \
  --region=<YOUR GCP REGION> \
  --bucket=<YOUR GCS BUCKET> \
  --spec=/path/to/spec.json \
  --count-query-check="5:MATCH (p:Person) RETURN count(p) AS count" \
  --count-query-check="0:MATCH (p:Person) WHERE NOT p.id STARTS WITH 'person' RETURN count(p) AS count"

About

Local Dataflow Runner for the googlecloud-to-neo4j template

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

 
 
 

Languages