Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, Jitendra Malik. In CVPR, 2017. Project Page
This official implementation can be found here
We provide code to train the abstraction models on ShapeNet categories.
Steps as listed here
The training takes place in two stages. In the first we use all cuboids while biasing them to be small and then allow the network to choose to use fewer cuboids. Sample scripts for the synset corresponding to chairs are below.
# Stage 1
cd experiments;
python cadAutoEncCuboids/primSelTsdfChamfer.py --disp=False --nParts=20 --nullReward=0 --probLrDecay=0.0001 --shapeLrDecay=0.01 --synset=03001627 --numTrainIter=20000 --name=chairChamferSurf_null_small_init_prob0pt0001_shape0pt01
After the first network is trained, we allow the learning of primitive existence probabilities.
# Stage 2
cd experiments;
python cadAutoEncCuboids/primSelTsdfChamfer.py --pretrainNet=chairChamferSurf_null_small_init_prob0pt0001_shape0pt01 --pretrainIter=2999 --disp=0 --gpu=1 --nParts=20 --nullReward=8e-5 --shapeLrDecay=0.5 --synset=03001627 --probLrDecay=0.2 --usePretrain=True --numTrainIter=30000 --name=chairChamferSurf_null_small_ft_prob0pt2_shape0pt5_null8em5
- Python3.6
- PyTorch 0.1.12