Skip to content

nimasasa/RFCMFND

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Random Forest Classifier for Multi-type Functional (RFCMFND)!

Package: RFCMFND

Type: Package

Title: A Random Forest Classifier for Multi-type Functional Neuroimaging Data

Version: 0.1

Date: 2015-12-18

Author(s): Nima Salehi Sadghiani, Amirhossein Meisami, Jian Kang

Description: In this package, we propose a modified Random Forest (RF) classifier for multi-type functional neuroimaging data (foci) and a K-Centroids Cluster Analysis (KCCA) algorithm to pre-process the foci.

License: University of Michigan

LazyData: TRUE

RoxygenNote: 5.0.1


Help File

imagePred {RFCMFND}

  • Description: Prediction of the new dataset using the trained object time.
  • Usage: imagePred(train, data)
  • Arguments:
  • train: An object of class imageTrain.
  • data: A n by 5 data.frame representing n observations in 5 dimensions.
  • Value:
  • **pred **: The prediction array.
  • Warning: The NewData data.frame should be processed with the exact same options as the training dataset.
  • Examples:
  • imagePred(train@Model, NewData)
  • imagePred(train@Model, imagePreProc (data, clusters=5, freq=TRUE,distorg=TRUE, dist=TRUE, cov=TRUE))

imagePreProc {RFCMFND}

  • Description: Defining new variables, running the KCCA.
  • Usage: imagePreProc(data, clusters = 0, freq = TRUE, distorg = TRUE, dist = TRUE, cov = TRUE)
  • Arguments:
  • data: A n by 5 data.frame representing n observations in 5 dimensions.
  • clusters: An Integer value for the number of clusters. The default value is 0.
  • freq: If freq=TRUE, the frequency column is added to the current input dataset.
  • distorg: If distorg=TRUE, the distance to origin column is added to the current input dataset.
  • dist: If dist=TRUE, the distance among points for each study is added to the current input dataset.
  • cov: If cov=TRUE, the covariances (XY, XZ, YZ) columns are added to the current input dataset.
  • Value:
  • dfg: A data.frame of the pre-processed inputs.
  • See Also:
  • Examples:
  • imagePreProc (data, clusters=5, freq=TRUE,distorg=TRUE, dist=TRUE, cov=TRUE)

**imageTrain {RFCMFND} **

  • Description: A modified version of RF classifier.
  • Usage: imageTrain(data, cparallel = FALSE, accuracy = FALSE)
  • Arguments:
  • data: A data.frame of the pre-processed inputs.
  • cparallel: If cparallel=TRUE, the RCPP Random Forest Classifier runs with parallel cores.
  • accuracy: If accuracy=TRUE, the accuracy of the classifier is shown.
  • Value: Model and acc, a list in which the first element is the model object (named “Model”) and the second element is the list of accuracies across the classes (named “acc”).
  • See Also:
  • Examples:
  • imageTrain(data, cparallel=TRUE, accuracy=TRUE)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages