Package: RFCMFND
Type: Package
Title: A Random Forest Classifier for Multi-type Functional Neuroimaging Data
Version: 0.1
Date: 2015-12-18
Author(s): Nima Salehi Sadghiani, Amirhossein Meisami, Jian Kang
Description: In this package, we propose a modified Random Forest (RF) classifier for multi-type functional neuroimaging data (foci) and a K-Centroids Cluster Analysis (KCCA) algorithm to pre-process the foci.
License: University of Michigan
LazyData: TRUE
RoxygenNote: 5.0.1
imagePred {RFCMFND}
- Description: Prediction of the new dataset using the trained object time.
- Usage: imagePred(train, data)
- Arguments:
- train: An object of class imageTrain.
- data: A n by 5 data.frame representing n observations in 5 dimensions.
- Value:
- **pred **: The prediction array.
- Warning: The NewData data.frame should be processed with the exact same options as the training dataset.
- Examples:
- imagePred(train@Model, NewData)
- imagePred(train@Model, imagePreProc (data, clusters=5, freq=TRUE,distorg=TRUE, dist=TRUE, cov=TRUE))
imagePreProc {RFCMFND}
- Description: Defining new variables, running the KCCA.
- Usage: imagePreProc(data, clusters = 0, freq = TRUE, distorg = TRUE, dist = TRUE, cov = TRUE)
- Arguments:
- data: A n by 5 data.frame representing n observations in 5 dimensions.
- clusters: An Integer value for the number of clusters. The default value is 0.
- freq: If freq=TRUE, the frequency column is added to the current input dataset.
- distorg: If distorg=TRUE, the distance to origin column is added to the current input dataset.
- dist: If dist=TRUE, the distance among points for each study is added to the current input dataset.
- cov: If cov=TRUE, the covariances (XY, XZ, YZ) columns are added to the current input dataset.
- Value:
- dfg: A data.frame of the pre-processed inputs.
- See Also:
- Examples:
- imagePreProc (data, clusters=5, freq=TRUE,distorg=TRUE, dist=TRUE, cov=TRUE)
**imageTrain {RFCMFND} **
- Description: A modified version of RF classifier.
- Usage: imageTrain(data, cparallel = FALSE, accuracy = FALSE)
- Arguments:
- data: A data.frame of the pre-processed inputs.
- cparallel: If cparallel=TRUE, the RCPP Random Forest Classifier runs with parallel cores.
- accuracy: If accuracy=TRUE, the accuracy of the classifier is shown.
- Value: Model and acc, a list in which the first element is the model object (named “Model”) and the second element is the list of accuracies across the classes (named “acc”).
- See Also:
- Examples:
- imageTrain(data, cparallel=TRUE, accuracy=TRUE)