-
Notifications
You must be signed in to change notification settings - Fork 63
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Make pareto-domination check compatible with NSGAII & add unittest
- Loading branch information
1 parent
ebe6028
commit 606b46a
Showing
2 changed files
with
305 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,275 @@ | ||
# Copyright 2022 NNAISENSE SA | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
# TODO: come up with a bunch of static fitness examples where there is no equal crowding distance between the points | ||
# (so that the the sorting is deterministic and the test is guaranteed to work) | ||
|
||
|
||
from typing import List, Tuple | ||
|
||
import numpy as np | ||
import torch | ||
|
||
from evotorch import Problem, SolutionBatch | ||
from evotorch.core import ParetoInfo | ||
|
||
|
||
class DummyMultiObjProblem(Problem): | ||
def __init__(self): | ||
super().__init__( | ||
objective_sense=["min", "max"], | ||
solution_length=4, | ||
dtype=torch.float32, | ||
initial_bounds=(-1000, 1000), | ||
) | ||
|
||
def _evaluate_batch(self, batch: SolutionBatch): | ||
f1 = batch.values[:, :2].pow(2).sum(dim=-1) | ||
f2 = batch.values[:, 2:].pow(2).sum(dim=-1) | ||
evals = batch.access_evals() | ||
evals[:, 0] = f1 | ||
evals[:, 1] = f2 | ||
|
||
def make_dummy_batch(self) -> SolutionBatch: | ||
""" | ||
Make a SolutionBatch on which the tests will be done. | ||
The decision values of this newly made SolutionBatch are fixed | ||
in such a way that, once pareto-sorted, the solutions' crowding | ||
distances do not coincide with each other (except for the ones that | ||
have the inf crodwing distances). | ||
""" | ||
values = torch.FloatTensor( | ||
[ | ||
[1148, 1955, 137, 2572], | ||
[2359, 1333, 1044, 2649], | ||
[1524, 1131, 2092, 1720], | ||
[930, 1647, 1040, 1691], | ||
[3255, 245, 3480, 2880], | ||
[2415, 2371, 203, 787], | ||
[2812, 692, 919, 2352], | ||
[729, 133, 3348, 582], | ||
[1973, 2582, 286, 3097], | ||
[1229, 1623, 3134, 3215], | ||
[3204, 1336, 2821, 465], | ||
[351, 3406, 1655, 134], | ||
[2263, 1376, 2395, 523], | ||
[681, 1156, 1196, 1070], | ||
[3405, 3053, 1322, 2574], | ||
[479, 456, 3517, 3032], | ||
[3360, 2285, 1902, 2869], | ||
[3926, 143, 463, 1750], | ||
[2891, 3652, 928, 102], | ||
[798, 1966, 872, 101], | ||
[3339, 481, 347, 1599], | ||
[1898, 1620, 1455, 1506], | ||
[2224, 2656, 3971, 3369], | ||
[3444, 3163, 260, 959], | ||
[1444, 805, 2353, 1238], | ||
[2513, 3131, 1710, 3919], | ||
[3254, 1216, 3282, 3607], | ||
[3266, 2883, 2432, 517], | ||
[657, 3677, 2317, 1313], | ||
[284, 604, 2151, 3976], | ||
[1421, 1013, 909, 2202], | ||
[1791, 1753, 1231, 962], | ||
[1023, 2999, 3713, 2661], | ||
[1114, 385, 2969, 1685], | ||
[2688, 1118, 1277, 1868], | ||
[1380, 3835, 2748, 3328], | ||
[3044, 115, 1646, 2611], | ||
[656, 496, 956, 1051], | ||
[3964, 2562, 3455, 1696], | ||
[1706, 2653, 2312, 2351], | ||
[3603, 803, 3038, 3794], | ||
[3868, 387, 606, 3505], | ||
[2838, 2995, 5, 1382], | ||
[3057, 621, 467, 2639], | ||
[58, 3132, 1679, 2261], | ||
[666, 15, 1387, 3115], | ||
[205, 960, 2413, 3103], | ||
[2043, 2743, 1334, 529], | ||
[1560, 1675, 3703, 714], | ||
[1377, 2549, 3891, 362], | ||
] | ||
) | ||
|
||
num_solutions = values.shape[0] | ||
batch = self.generate_batch(num_solutions, empty=True) | ||
batch.access_values()[:] = values | ||
return batch | ||
|
||
|
||
class NonVectorizedParetoTools: | ||
""" | ||
Class that contains non-vectorized pareto-sorting functions. | ||
The idea is to compare the results of these non-vectorized functions | ||
and the results of the newly introduced vectorized pareto-sorting | ||
methods of SolutionBatch. | ||
""" | ||
|
||
vectorized_crowding = False | ||
|
||
@staticmethod | ||
def dominates(i: int, j: int, utils: np.ndarray) -> bool: | ||
return np.all(utils[i, :] >= utils[j, :]) and np.any(utils[i, :] > utils[j, :]) | ||
|
||
@staticmethod | ||
def crowding_distance_assignment(pareto_set: np.ndarray, utils: np.ndarray) -> np.ndarray: | ||
L = len(pareto_set) | ||
distances = np.zeros(L, dtype="float32") | ||
for m in range(utils.shape[1]): | ||
# U = utils[pareto_set][:, m] | ||
U = utils[pareto_set, m] | ||
ordered = np.argsort(U)[::-1] | ||
|
||
# e.g. pareto_set = [1, 7, 3] | ||
# e.g. U = [20, 14, 15] | ||
|
||
# ordered = [0, 2, 1] | ||
|
||
distances[ordered[0]] = np.inf | ||
distances[ordered[-1]] = np.inf | ||
|
||
fmax = np.max(U) | ||
fmin = np.min(U) | ||
|
||
for i in range(1, L - 1): | ||
denom = fmax - fmin | ||
if denom < 1e-8: | ||
denom = 1e-8 | ||
distances[ordered[i]] += (U[ordered[i - 1]] - U[ordered[i + 1]]) / denom | ||
|
||
return distances | ||
|
||
@classmethod | ||
def pareto_sort_np( | ||
cls, | ||
utils: np.ndarray, | ||
crowdsort: bool, | ||
crowdsort_upto: int, | ||
) -> Tuple[List[np.ndarray], np.ndarray]: | ||
|
||
if cls.vectorized_crowding: | ||
|
||
def crowding_distance_assignment(*args, **kwargs): | ||
return cls.crowding_distance_assignment2(*args, **kwargs).numpy() | ||
|
||
else: | ||
crowding_distance_assignment = cls.crowding_distance_assignment | ||
|
||
count: int = 0 | ||
|
||
n = int(len(utils)) | ||
dominated_by: List[List[int]] = [[0 for __ in range(0)] for _ in range(n)] | ||
domination_counter: List[int] = [0 for _ in range(n)] | ||
rank = np.zeros(n, dtype="int64") | ||
fronts: List[np.ndarray] = [np.array([0], dtype="int64") for _ in range(0)] | ||
|
||
first_front: List[int] = [] | ||
for p in range(n): | ||
for q in range(n): | ||
if cls.dominates(p, q, utils): | ||
dominated_by[p].append(q) | ||
elif cls.dominates(q, p, utils): | ||
domination_counter[p] += 1 | ||
if domination_counter[p] == 0: | ||
rank[p] = 0 | ||
# fronts[0].append(p) | ||
first_front.append(p) | ||
|
||
first_front_array = np.array(first_front, "int64") | ||
if not crowdsort: | ||
fronts.append(first_front_array) | ||
else: | ||
fronts.append(first_front_array[crowding_distance_assignment(first_front_array, utils).argsort()[::-1]]) | ||
count += len(fronts[-1]) | ||
|
||
i = 0 | ||
while True: | ||
next_front: List[int] = [] | ||
for p in fronts[-1]: | ||
for q in dominated_by[p]: | ||
domination_counter[q] -= 1 | ||
if domination_counter[q] == 0: | ||
rank[q] = i + 1 | ||
next_front.append(q) | ||
i += 1 | ||
|
||
if len(next_front) == 0: | ||
break | ||
else: | ||
next_front_array = np.array(next_front, "int64") | ||
if (not crowdsort) or (count > crowdsort_upto): | ||
fronts.append(next_front_array) | ||
else: | ||
fronts.append( | ||
next_front_array[crowding_distance_assignment(next_front_array, utils).argsort()[::-1]] | ||
) | ||
count += len(fronts[-1]) | ||
|
||
return fronts, rank | ||
|
||
@classmethod | ||
def pareto_sort( | ||
cls, utils: torch.Tensor, crowdsort: bool, crowdsort_upto: int | ||
) -> Tuple[List[torch.Tensor], torch.Tensor]: | ||
device = utils.device | ||
utils = torch.as_tensor(utils, device="cpu").numpy() | ||
fronts, ranks = cls.pareto_sort_np(utils, crowdsort, crowdsort_upto) | ||
|
||
for i in range(len(fronts)): | ||
fronts[i] = torch.as_tensor(torch.from_numpy(fronts[i]), device=device) | ||
|
||
ranks = torch.as_tensor(torch.from_numpy(ranks), device=device) | ||
|
||
return fronts, ranks | ||
|
||
@classmethod | ||
def arg_pareto_sort(cls, batch: SolutionBatch, crowdsort: bool = True) -> ParetoInfo: | ||
utils = batch.utils() | ||
fronts, ranks = cls.pareto_sort(utils, crowdsort, len(batch)) | ||
return ParetoInfo(fronts=fronts, ranks=ranks) | ||
|
||
|
||
def test_pareto_sorting(): | ||
# Make a new instance of the simple multi-objective problem. | ||
problem = DummyMultiObjProblem() | ||
|
||
# Instantiate and evaluate the test solutions. | ||
batch = problem.make_dummy_batch() | ||
problem.evaluate(batch) | ||
|
||
# Compute pareto info using both non-vectorized and vectorized tools | ||
pareto_info_a = batch.arg_pareto_sort() | ||
pareto_info_b = NonVectorizedParetoTools.arg_pareto_sort(batch) | ||
|
||
# Ensure that the ranks of the solutions match | ||
assert torch.all(pareto_info_a.ranks == pareto_info_b.ranks) | ||
|
||
# Ensure that the number of fronts match | ||
assert len(pareto_info_a.fronts) == len(pareto_info_b.fronts) | ||
|
||
num_fronts = len(pareto_info_a.fronts) | ||
|
||
for i_front in range(num_fronts): | ||
# For each front, ensure that the crowding-distance-based ordering match | ||
front_a = pareto_info_a.fronts[i_front] | ||
front_b = pareto_info_b.fronts[i_front] | ||
assert len(front_a) == len(front_b) | ||
if len(front_a) > 2: | ||
crowd_sorted_a = front_a[2:] | ||
crowd_sorted_b = front_b[2:] | ||
assert torch.all(crowd_sorted_a == crowd_sorted_b) |