SEEN: Structured Event Enhancement Network for Explainable Need Detection of Information Recall Assistance
This repo provides the source code & data of our paper SEEN: Structured Event Enhancement Network for Explainable Need Detection of Information Recall Assistance. If you use any of our code, processed data or pretrained models, please cite:
- OS: Linux/Debian
- Python: 3.9.10
- Pytorch: 1.11.0
- CUDA: 11.5
Command of package installation
pip install torch==1.11.0 torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu115
pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.11.0+cu115.html
pip install -r requirements.txt
# cached-path > 1.1.2 has below bug
# AttributeError: module 'cached_path' has no attribute 'file_friendly_logging'
pip install cached-path==1.1.2
We pre-define four experiments setting for coonvenience.
- SEENLongformer
- SEENLongformerLarge
python main.py \
--do_train \
--exp_name=$exp \
--batch_size=$BATCH_SIZE \
--val_batch_size=$VAL_BATCH_SIZE \
--gpus=$GPUS \
--val_step=$VAL_STEP \
--epochs=3 \
--seed=$seed \
--pretrained_path=$seed # pass this vvalue to utilize the pretrained model)
python main.py \
--do_val \
--exp_name=$exp \
--val_batch_size=$VAL_BATCH_SIZE
python main.py \
--do_test \
--exp_name=$exp \
--val_batch_size=$VAL_BATCH_SIZE
--test_model_path=$TEST_MODEL_PATH # pass this value to test specific checkpoint)