Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix for onnx 1.7 release #381

Merged
merged 5 commits into from
Apr 3, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 15 additions & 2 deletions onnxmltools/proto/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,9 @@ def _check_onnx_version():
import pkg_resources
min_required_version = pkg_resources.parse_version('1.0.1')
current_version = pkg_resources.get_distribution('onnx').parsed_version
assert current_version >= min_required_version , 'ONNXMLTools requires ONNX version 1.0.1 or a newer one'
assert current_version >= min_required_version, 'ONNXMLTools requires ONNX version 1.0.1 or a newer one'


_check_onnx_version()

# Rather than using ONNX protobuf definition throughout our codebase, we import ONNX protobuf definition here so that
Expand All @@ -21,6 +23,8 @@ def _check_onnx_version():
from onnx import mapping
from onnx.onnx_pb import TensorProto
from onnx.helper import split_complex_to_pairs


def _make_tensor_fixed(name, data_type, dims, vals, raw=False):
'''
Make a TensorProto with specified arguments. If raw is False, this
Expand Down Expand Up @@ -51,4 +55,13 @@ def _make_tensor_fixed(name, data_type, dims, vals, raw=False):


def get_opset_number_from_onnx():
return onnx.defs.onnx_opset_version()
# since the method was widely used among while it is buggy to get the opset number...
# ... blindly, so change it to be safer without the name change.

default_max_opset = 11
try:
from onnxconverter_common.topology import DEFAULT_OPSET_NUMBER
default_max_opset = DEFAULT_OPSET_NUMBER
jiafatom marked this conversation as resolved.
Show resolved Hide resolved
except: # noqa
pass
return min(default_max_opset, onnx.defs.onnx_opset_version())
133 changes: 0 additions & 133 deletions tests/sciikit-learn/test_sklearn_converters.py

This file was deleted.

47 changes: 21 additions & 26 deletions tests/xgboost/test_xgboost_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,32 +7,41 @@
import numpy as np
from numpy.testing import assert_almost_equal
import pandas

try:
import onnxruntime as rt
from xgboost import XGBRegressor, XGBClassifier, train, DMatrix
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
from onnxmltools.convert import convert_xgboost
from onnxmltools.convert import convert_xgboost, convert_sklearn
from onnxmltools.convert.common.data_types import FloatTensorType
from onnxmltools.utils import dump_data_and_model
from onnxmltools.convert.xgboost.operator_converters.XGBoost import convert_xgboost as convert_xgb
from onnxmltools.proto import get_opset_number_from_onnx

can_test = True
except ImportError:
# python 2.7
can_test = False
try:
from skl2onnx import update_registered_converter, to_onnx
from skl2onnx import update_registered_converter
from skl2onnx.common.shape_calculator import calculate_linear_regressor_output_shapes

can_test |= True
except ImportError:
# sklearn-onnx not recent enough
can_test = False


@unittest.skipIf(sys.version_info[:2] <= (3, 5), reason="not available")
@unittest.skipIf(sys.version_info[0] == 2,
reason="xgboost converter not tested on python 2")
@unittest.skipIf(not can_test,
reason="sklearn-onnx not recent enough")
class TestXGBoostModelsPipeline(unittest.TestCase):

def _column_tranformer_fitted_from_df(self, data):
def transformer_for_column(column):
if column.dtype in ['float64', 'float32']:
Expand All @@ -48,7 +57,6 @@ def transformer_for_column(column):
remainder='drop'
).fit(data)


def _convert_dataframe_schema(self, data):
def type_for_column(column):
if column.dtype in ['float64', 'float32']:
Expand All @@ -63,40 +71,25 @@ def type_for_column(column):
raise ValueError()

res = [(col, type_for_column(data[col])) for col in data.columns]
return res
return res

@unittest.skipIf(sys.version_info[:2] <= (3, 5), reason="not available")
@unittest.skipIf(sys.version_info[0] == 2,
reason="xgboost converter not tested on python 2")
@unittest.skipIf(not can_test,
reason="sklearn-onnx not recent enough")
def test_xgboost_10_skl_missing(self):
self.common_test_xgboost_10_skl(np.nan)

@unittest.skipIf(sys.version_info[:2] <= (3, 5), reason="not available")
@unittest.skipIf(sys.version_info[0] == 2,
reason="xgboost converter not tested on python 2")
@unittest.skipIf(not can_test,
reason="sklearn-onnx not recent enough")
def test_xgboost_10_skl_zero(self):
try:
self.common_test_xgboost_10_skl(0., True)
except RuntimeError as e:
assert "Cannot convert a XGBoost model where missing values" in str(e)

@unittest.skipIf(sys.version_info[:2] <= (3, 5), reason="not available")
@unittest.skipIf(sys.version_info[0] == 2,
reason="xgboost converter not tested on python 2")
@unittest.skipIf(not can_test,
reason="sklearn-onnx not recent enough")
def test_xgboost_10_skl_zero_replace(self):
self.common_test_xgboost_10_skl(np.nan, True)

def common_test_xgboost_10_skl(self, missing, replace=False):
this = os.path.abspath(os.path.dirname(__file__))
data = os.path.join(this, "data_fail.csv")
data = pandas.read_csv(data)

for col in data:
dtype = data[col].dtype
if dtype in ['float64', 'float32']:
Expand All @@ -112,9 +105,9 @@ def common_test_xgboost_10_skl(self, missing, replace=False):

train_df, test_df, train_labels, test_labels = train_test_split(
full_df, full_labels, test_size=.2, random_state=11)

col_transformer = self._column_tranformer_fitted_from_df(full_df)

param_distributions = {
"colsample_bytree": 0.5,
"gamma": 0.2,
Expand All @@ -130,7 +123,7 @@ def common_test_xgboost_10_skl(self, missing, replace=False):
regressor.fit(col_transformer.transform(train_df), train_labels)
model = Pipeline(steps=[('preprocessor', col_transformer),
('regressor', regressor)])

update_registered_converter(
XGBRegressor, 'XGBRegressor',
calculate_linear_regressor_output_shapes,
Expand All @@ -140,7 +133,9 @@ def common_test_xgboost_10_skl(self, missing, replace=False):
input_xgb = model.steps[0][-1].transform(test_df[:5]).astype(np.float32)
if replace:
input_xgb[input_xgb[:, :] == missing] = np.nan
onnx_last = to_onnx(model.steps[1][-1], input_xgb)
onnx_last = convert_sklearn(model.steps[1][-1],
initial_types=[('X', FloatTensorType(shape=[None, input_xgb.shape[1]]))],
target_opset=get_opset_number_from_onnx())
session = rt.InferenceSession(onnx_last.SerializeToString())
pred_skl = model.steps[1][-1].predict(input_xgb).ravel()
pred_onx = session.run(None, {'X': input_xgb})[0].ravel()
Expand Down