Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix unsupported ops TF 2.14.0: OnesLike #2270

Merged
merged 5 commits into from
Nov 16, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions tests/test_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -4113,6 +4113,16 @@ def func(x, y):
self._run_test_case(func, [_OUTPUT], {_INPUT: input_x.astype(np.int32), _INPUT1: input_y}, as_session=True,
graph_validator=lambda g: check_op_count(g, "ConstantOfShape", 1, disabled=False))

def test_ones_like(self):
input_x = np.random.random_sample([3, 16, 16]).astype(np.float32)
input_y = np.array([16, 16, 3]).astype(np.int64)

def func(x, y):
z = tf.reshape(x, y)
return tf.ones_like(z, name=_TFOUTPUT)

self._run_test_case(func, [_OUTPUT], {_INPUT: input_x, _INPUT1: input_y})

@check_opset_min_version(9, "is_nan")
def test_isnan(self):
# only compatible with dtype `float32`
Expand Down
55 changes: 37 additions & 18 deletions tf2onnx/onnx_opset/generator.py
Original file line number Diff line number Diff line change
Expand Up @@ -227,31 +227,50 @@ def version_7(cls, ctx, node, **kwargs):
ctx.remove_input(node, node.input[1], 1)


def _const_like_version_1(ctx, node, value):
shapes = node.output_shapes
dtypes = node.output_dtypes
ctx.remove_node(node.name)
casted_input = ctx.make_node("Cast", node.input, attr={'to': onnx_pb.TensorProto.INT64})
const_value = ctx.make_const(utils.make_name("value"), np.array(value).astype(np.int64))
mul_node = ctx.make_node('Mul', inputs=[casted_input.output[0], const_value.output[0]])
ctx.make_node("Cast", inputs=[mul_node.output[0]],
attr={'to': dtypes[0]},
name=node.name, outputs=node.output,
shapes=shapes, dtypes=dtypes)


def _const_like_version_9(ctx, node, value):
dtypes = node.output_dtypes
ctx.remove_node(node.name)
shape = ctx.make_node("Shape", node.input).output[0]
value_tensor = helper.make_tensor("value", dtypes[0], [1], vals=[value])
ctx.make_node("ConstantOfShape", inputs=[shape],
attr={'value': value_tensor},
name=node.name, outputs=node.output,
dtypes=dtypes)


@tf_op("ZerosLike")
class ZerosLike:
@classmethod
def version_1(cls, ctx, node, **kwargs):
shapes = node.output_shapes
dtypes = node.output_dtypes
ctx.remove_node(node.name)
casted_input = ctx.make_node("Cast", node.input, attr={'to': onnx_pb.TensorProto.INT64})
const_zero = ctx.make_const(utils.make_name("zero"), np.array(0).astype(np.int64))
mul_node = ctx.make_node('Mul', inputs=[casted_input.output[0], const_zero.output[0]])
ctx.make_node("Cast", inputs=[mul_node.output[0]],
attr={'to': dtypes[0]},
name=node.name, outputs=node.output,
shapes=shapes, dtypes=dtypes)
_const_like_version_1(ctx, node, 0)

@classmethod
def version_9(cls, ctx, node, **kwargs):
dtypes = node.output_dtypes
ctx.remove_node(node.name)
shape = ctx.make_node("Shape", node.input).output[0]
zero_tensor = helper.make_tensor("value", dtypes[0], [1], vals=[0])
ctx.make_node("ConstantOfShape", inputs=[shape],
attr={'value': zero_tensor},
name=node.name, outputs=node.output,
dtypes=dtypes)
_const_like_version_9(ctx, node, 0)


@tf_op("OnesLike")
class OnesLike:
@classmethod
def version_1(cls, ctx, node, **kwargs):
_const_like_version_1(ctx, node, 1)

@classmethod
def version_9(cls, ctx, node, **kwargs):
_const_like_version_9(ctx, node, 1)


@tf_op(["IteratorV2", "FIFOQueueV2"])
Expand Down