Skip to content

Commit

Permalink
fix conflicts from dev-1.x
Browse files Browse the repository at this point in the history
  • Loading branch information
sunjiahao1999 committed Mar 15, 2023
2 parents f9c685e + ce325f5 commit 364d758
Show file tree
Hide file tree
Showing 124 changed files with 2,087 additions and 893 deletions.
30 changes: 20 additions & 10 deletions configs/3dssd/3dssd_4xb4_kitti-3d-car.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@
class_names = ['Car']
point_cloud_range = [0, -40, -5, 70, 40, 3]
input_modality = dict(use_lidar=True, use_camera=False)
backend_args = None

db_sampler = dict(
data_root=data_root,
info_path=data_root + 'kitti_dbinfos_train.pkl',
Expand All @@ -17,17 +19,20 @@
classes=class_names,
sample_groups=dict(Car=15),
points_loader=dict(
type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4))

file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
# file_client_args = dict(
# backend='petrel', path_mapping=dict(data='s3://kitti_data/'))
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
backend_args=backend_args)

train_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
Expand All @@ -52,7 +57,12 @@
]

test_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
Expand Down
51 changes: 43 additions & 8 deletions configs/_base_/datasets/kitti-3d-3class.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,21 @@
input_modality = dict(use_lidar=True, use_camera=False)
metainfo = dict(classes=class_names)

# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection3d/kitti/'

# Method 2: Use backend_args, file_client_args in versions before 1.1.0rc4
# backend_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/detection3d/',
# 'data/': 's3://openmmlab/datasets/detection3d/'
# }))
backend_args = None

db_sampler = dict(
data_root=data_root,
info_path=data_root + 'kitti_dbinfos_train.pkl',
Expand All @@ -16,14 +31,20 @@
classes=class_names,
sample_groups=dict(Car=12, Pedestrian=6, Cyclist=6),
points_loader=dict(
type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4))
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
backend_args=backend_args)

train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4, # x, y, z, intensity
use_dim=4),
use_dim=4,
backend_args=backend_args),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(type='ObjectSample', db_sampler=db_sampler),
dict(
Expand All @@ -45,7 +66,12 @@
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
Expand All @@ -66,7 +92,12 @@
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
dict(type='Pack3DDetInputs', keys=['points'])
]
train_dataloader = dict(
Expand All @@ -88,7 +119,8 @@
metainfo=metainfo,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='LiDAR')))
box_type_3d='LiDAR',
backend_args=backend_args)))
val_dataloader = dict(
batch_size=1,
num_workers=1,
Expand All @@ -104,7 +136,8 @@
modality=input_modality,
test_mode=True,
metainfo=metainfo,
box_type_3d='LiDAR'))
box_type_3d='LiDAR',
backend_args=backend_args))
test_dataloader = dict(
batch_size=1,
num_workers=1,
Expand All @@ -120,11 +153,13 @@
modality=input_modality,
test_mode=True,
metainfo=metainfo,
box_type_3d='LiDAR'))
box_type_3d='LiDAR',
backend_args=backend_args))
val_evaluator = dict(
type='KittiMetric',
ann_file=data_root + 'kitti_infos_val.pkl',
metric='bbox')
metric='bbox',
backend_args=backend_args)
test_evaluator = val_evaluator

vis_backends = [dict(type='LocalVisBackend')]
Expand Down
51 changes: 43 additions & 8 deletions configs/_base_/datasets/kitti-3d-car.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,21 @@
input_modality = dict(use_lidar=True, use_camera=False)
metainfo = dict(classes=class_names)

# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection3d/kitti/'

# Method 2: Use backend_args, file_client_args in versions before 1.1.0rc4
# backend_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/detection3d/',
# 'data/': 's3://openmmlab/datasets/detection3d/'
# }))
backend_args = None

db_sampler = dict(
data_root=data_root,
info_path=data_root + 'kitti_dbinfos_train.pkl',
Expand All @@ -14,14 +29,20 @@
classes=class_names,
sample_groups=dict(Car=15),
points_loader=dict(
type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4))
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
backend_args=backend_args)

train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4, # x, y, z, intensity
use_dim=4),
use_dim=4,
backend_args=backend_args),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(type='ObjectSample', db_sampler=db_sampler),
dict(
Expand All @@ -43,7 +64,12 @@
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
Expand All @@ -64,7 +90,12 @@
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
dict(type='Pack3DDetInputs', keys=['points'])
]
train_dataloader = dict(
Expand All @@ -86,7 +117,8 @@
metainfo=metainfo,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='LiDAR')))
box_type_3d='LiDAR',
backend_args=backend_args)))
val_dataloader = dict(
batch_size=1,
num_workers=1,
Expand All @@ -102,7 +134,8 @@
modality=input_modality,
test_mode=True,
metainfo=metainfo,
box_type_3d='LiDAR'))
box_type_3d='LiDAR',
backend_args=backend_args))
test_dataloader = dict(
batch_size=1,
num_workers=1,
Expand All @@ -118,11 +151,13 @@
modality=input_modality,
test_mode=True,
metainfo=metainfo,
box_type_3d='LiDAR'))
box_type_3d='LiDAR',
backend_args=backend_args))
val_evaluator = dict(
type='KittiMetric',
ann_file=data_root + 'kitti_infos_val.pkl',
metric='bbox')
metric='bbox',
backend_args=backend_args)
test_evaluator = val_evaluator

vis_backends = [dict(type='LocalVisBackend')]
Expand Down
35 changes: 23 additions & 12 deletions configs/_base_/datasets/kitti-mono3d.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,15 +4,23 @@
input_modality = dict(use_lidar=False, use_camera=True)
metainfo = dict(classes=class_names)

file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
# file_client_args = dict(
# backend='petrel', path_mapping=dict(data='s3://kitti_data/'))
# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection3d/kitti/'

# Method 2: Use backend_args, file_client_args in versions before 1.1.0rc4
# backend_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/detection3d/',
# 'data/': 's3://openmmlab/datasets/detection3d/'
# }))
backend_args = None

train_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
dict(
type='LoadAnnotations3D',
with_bbox=True,
Expand All @@ -31,12 +39,12 @@
]),
]
test_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
dict(type='Resize', scale=(1242, 375), keep_ratio=True),
dict(type='Pack3DDetInputs', keys=['img'])
]
eval_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
dict(type='Pack3DDetInputs', keys=['img'])
]

Expand All @@ -57,7 +65,8 @@
metainfo=metainfo,
# we use box_type_3d='Camera' in monocular 3d
# detection task
box_type_3d='Camera'))
box_type_3d='Camera',
backend_args=backend_args))
val_dataloader = dict(
batch_size=1,
num_workers=2,
Expand All @@ -74,13 +83,15 @@
load_type='fov_image_based',
metainfo=metainfo,
test_mode=True,
box_type_3d='Camera'))
box_type_3d='Camera',
backend_args=backend_args))
test_dataloader = val_dataloader

val_evaluator = dict(
type='KittiMetric',
ann_file=data_root + 'kitti_infos_val.pkl',
metric='bbox')
metric='bbox',
backend_args=backend_args)

test_evaluator = val_evaluator

Expand Down
Loading

0 comments on commit 364d758

Please sign in to comment.