Skip to content

Commit

Permalink
Merge 2294135 into 20987e5
Browse files Browse the repository at this point in the history
  • Loading branch information
sunjiahao1999 authored Mar 29, 2023
2 parents 20987e5 + 2294135 commit b0aa33f
Show file tree
Hide file tree
Showing 5 changed files with 164 additions and 52 deletions.
57 changes: 31 additions & 26 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -134,6 +134,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
<li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
<li>DLA (CVPR'2018)</li>
<li>MinkResNet (CVPR'2019)</li>
<li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
<li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
</ul>
</td>
Expand Down Expand Up @@ -221,6 +222,8 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
<td>
<li><b>Outdoor</b></li>
<ul>
<li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
<li><a href="configs/spvcnn">SPVCNN (ECCV'2020)</a></li>
<li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
</ul>
<li><b>Indoor</b></li>
Expand All @@ -237,32 +240,34 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
</tbody>
</table>

| | ResNet | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet | Cylinder3D |
| :-----------: | :----: | :--------: | :----: | :---: | :-----: | :-: | :--------: | :--------: |
| SECOND |||||||||
| PointPillars |||||||||
| FreeAnchor |||||||||
| VoteNet |||||||||
| H3DNet |||||||||
| 3DSSD |||||||||
| Part-A2 |||||||||
| MVXNet |||||||||
| CenterPoint |||||||||
| SSN |||||||||
| ImVoteNet |||||||||
| FCOS3D |||||||||
| PointNet++ |||||||||
| Group-Free-3D |||||||||
| ImVoxelNet |||||||||
| PAConv |||||||||
| DGCNN |||||||||
| SMOKE |||||||||
| PGD |||||||||
| MonoFlex |||||||||
| SA-SSD |||||||||
| FCAF3D |||||||||
| PV-RCNN |||||||||
| Cylinder3D |||||||||
| | ResNet | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet | Cylinder3D | MinkUNet |
| :-----------: | :----: | :--------: | :----: | :---: | :-----: | :-: | :--------: | :--------: | :------: |
| SECOND ||||||||||
| PointPillars ||||||||||
| FreeAnchor ||||||||||
| VoteNet ||||||||||
| H3DNet ||||||||||
| 3DSSD ||||||||||
| Part-A2 ||||||||||
| MVXNet ||||||||||
| CenterPoint ||||||||||
| SSN ||||||||||
| ImVoteNet ||||||||||
| FCOS3D ||||||||||
| PointNet++ ||||||||||
| Group-Free-3D ||||||||||
| ImVoxelNet ||||||||||
| PAConv ||||||||||
| DGCNN ||||||||||
| SMOKE ||||||||||
| PGD ||||||||||
| MonoFlex ||||||||||
| SA-SSD ||||||||||
| FCAF3D ||||||||||
| PV-RCNN ||||||||||
| Cylinder3D ||||||||||
| MinkUNet ||||||||||
| SPVCNN ||||||||||

**Note:** All the about **300+ models, methods of 40+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.

Expand Down
57 changes: 31 additions & 26 deletions README_zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -131,6 +131,7 @@ MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代
<li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
<li>DLA (CVPR'2018)</li>
<li>MinkResNet (CVPR'2019)</li>
<li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
<li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
</ul>
</td>
Expand Down Expand Up @@ -217,6 +218,8 @@ MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代
<td>
<li><b>室外</b></li>
<ul>
<li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
<li><a href="configs/spvcnn">SPVCNN (ECCV'2020)</a></li>
<li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
</ul>
<li><b>室内</b></li>
Expand All @@ -233,32 +236,34 @@ MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代
</tbody>
</table>

| | ResNet | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet | Cylinder3D |
| :-----------: | :----: | :--------: | :----: | :---: | :-----: | :-: | :--------: | :--------: |
| SECOND |||||||||
| PointPillars |||||||||
| FreeAnchor |||||||||
| VoteNet |||||||||
| H3DNet |||||||||
| 3DSSD |||||||||
| Part-A2 |||||||||
| MVXNet |||||||||
| CenterPoint |||||||||
| SSN |||||||||
| ImVoteNet |||||||||
| FCOS3D |||||||||
| PointNet++ |||||||||
| Group-Free-3D |||||||||
| ImVoxelNet |||||||||
| PAConv |||||||||
| DGCNN |||||||||
| SMOKE |||||||||
| PGD |||||||||
| MonoFlex |||||||||
| SA-SSD |||||||||
| FCAF3D |||||||||
| PV-RCNN |||||||||
| Cylinder3D |||||||||
| | ResNet | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet | Cylinder3D | MinkUNet |
| :-----------: | :----: | :--------: | :----: | :---: | :-----: | :-: | :--------: | :--------: | :------: |
| SECOND ||||||||||
| PointPillars ||||||||||
| FreeAnchor ||||||||||
| VoteNet ||||||||||
| H3DNet ||||||||||
| 3DSSD ||||||||||
| Part-A2 ||||||||||
| MVXNet ||||||||||
| CenterPoint ||||||||||
| SSN ||||||||||
| ImVoteNet ||||||||||
| FCOS3D ||||||||||
| PointNet++ ||||||||||
| Group-Free-3D ||||||||||
| ImVoxelNet ||||||||||
| PAConv ||||||||||
| DGCNN ||||||||||
| SMOKE ||||||||||
| PGD ||||||||||
| MonoFlex ||||||||||
| SA-SSD ||||||||||
| FCAF3D ||||||||||
| PV-RCNN ||||||||||
| Cylinder3D ||||||||||
| MinkUNet ||||||||||
| SPVCNN ||||||||||

**注意:**[MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/zh_cn/model_zoo.md) 支持的基于 2D 检测的 **300+ 个模型,40+ 的论文算法**在 MMDetection3D 中都可以被训练或使用。

Expand Down
44 changes: 44 additions & 0 deletions configs/spvcnn/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
# Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution

> [Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution ](https://arxiv.org/abs/2007.16100)
<!-- [ALGORITHM] -->

## Abstract

Self-driving cars need to understand 3D scenes efficiently and accurately in order to drive safely. Given the limited hardware resources, existing 3D perception models are not able to recognize small instances (e.g., pedestrians, cyclists) very well due to the low-resolution voxelization and aggressive downsampling. To this end, we propose Sparse Point-Voxel Convolution (SPVConv), a lightweight 3D module that equips the vanilla Sparse Convolution with the high-resolution point-based branch. With negligible overhead, this point-based branch is able to preserve the fine details even from large outdoor scenes. To explore the spectrum of efficient 3D models, we first define a flexible architecture design space based on SPVConv, and we then present 3D Neural Architecture Search (3D-NAS) to search the optimal network architecture over this diverse design space efficiently and effectively. Experimental results validate that the resulting SPVNAS model is fast and accurate: it outperforms the state-of-the-art MinkowskiNet by 3.3%, ranking 1st on the competitive SemanticKITTI leaderboard. It also achieves 8x computation reduction and 3x measured speedup over MinkowskiNet with higher accuracy. Finally, we transfer our method to 3D object detection, and it achieves consistent improvements over the one-stage detection baseline on KITTI.

<div align=center>
<img src="https://user-images.githubusercontent.com/72679458/226509154-80c27d8e-c138-426a-b92e-72846997b5b3.png" width="800"/>
</div>

## Introduction

We implement SPVCNN with [TorchSparse](https://github.com/mit-han-lab/torchsparse) backend and provide the result and checkpoints on SemanticKITTI datasets.

## Results and models

### SemanticKITTI

| Method | Lr schd | Mem (GB) | mIoU | Download |
| :--------: | :-----: | :------: | :--: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| SPVCNN-W16 | 15e | 3.9 | 61.9 | [model](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/spvcnn/spvcnn_w16_8xb2-15e_semantickitti/spvcnn_w16_8xb2-15e_semantickitti_20230321_011645-a2734d85.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/spvcnn/spvcnn_w16_8xb2-15e_semantickitti/spvcnn_w16_8xb2-15e_semantickitti_20230321_011645.log) |
| SPVCNN-W20 | 15e | 4.2 | 62.7 | [model](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/spvcnn/spvcnn_w20_8xb2-15e_semantickitti/spvcnn_w20_8xb2-15e_semantickitti_20230321_011649-519e7eff.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/spvcnn/spvcnn_w20_8xb2-15e_semantickitti/spvcnn_w20_8xb2-15e_semantickitti_20230321_011649.log) |
| SPVCNN-W32 | 15e | 5.4 | 64.3 | [model](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/spvcnn/spvcnn_w32_8xb2-15e_semantickitti/spvcnn_w32_8xb2-15e_semantickitti_20230308_113324-f7c0c5b4.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/spvcnn/pvcnn_w32_8xb2-15e_semantickitti/spvcnn_w32_8xb2-15e_semantickitti_20230308_113324.log) |

**Note:** We follow the implementation in SPVNAS original [repo](https://github.com/mit-han-lab/spvnas) and W16\\W20\\W32 indicates different number of channels.

**Note:** Due to TorchSparse backend, the model performance is unstable with TorchSparse backend and may fluctuate by about 1.5 mIoU for different random seeds.

## Citation

```latex
@inproceedings{tang2020searching,
title={Searching efficient 3d architectures with sparse point-voxel convolution},
author={Tang, Haotian and Liu, Zhijian and Zhao, Shengyu and Lin, Yujun and Lin, Ji and Wang, Hanrui and Han, Song},
booktitle={Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XXVIII},
pages={685--702},
year={2020},
organization={Springer}
}
```
Loading

0 comments on commit b0aa33f

Please sign in to comment.