Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] add mono3d inferencer #2190

Merged
merged 14 commits into from
Jan 31, 2023
2 changes: 2 additions & 0 deletions configs/pgd/metafile.yml
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@ Collections:

Models:
- Name: pgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d
Alias:
- pgd_kitti
In Collection: PGD
Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d.py
Metadata:
Expand Down
10 changes: 4 additions & 6 deletions mmdet3d/apis/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,10 @@
inference_mono_3d_detector,
inference_multi_modality_detector, inference_segmentor,
init_model)
from .inferencers import BaseDet3DInferencer, MonoDet3DInferencer

__all__ = [
'inference_detector',
'init_model',
'inference_mono_3d_detector',
'convert_SyncBN',
'inference_multi_modality_detector',
'inference_segmentor',
'inference_detector', 'init_model', 'inference_mono_3d_detector',
'convert_SyncBN', 'inference_multi_modality_detector',
ZCMax marked this conversation as resolved.
Show resolved Hide resolved
'inference_segmentor', 'BaseDet3DInferencer', 'MonoDet3DInferencer'
]
5 changes: 5 additions & 0 deletions mmdet3d/apis/inferencers/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .base_det3d_inferencer import BaseDet3DInferencer
from .mono_det3d_inferencer import MonoDet3DInferencer

__all__ = ['BaseDet3DInferencer', 'MonoDet3DInferencer']
248 changes: 248 additions & 0 deletions mmdet3d/apis/inferencers/base_det3d_inferencer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,248 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Sequence, Tuple, Union

import mmengine
import numpy as np
import torch.nn as nn
from mmengine.infer.infer import BaseInferencer, ModelType
from mmengine.runner import load_checkpoint
from mmengine.structures import InstanceData
from mmengine.visualization import Visualizer

from mmdet3d.registry import MODELS
from mmdet3d.utils import ConfigType, register_all_modules

InstanceList = List[InstanceData]
InputType = Union[str, np.ndarray]
InputsType = Union[InputType, Sequence[InputType]]
PredType = Union[InstanceData, InstanceList]
ImgType = Union[np.ndarray, Sequence[np.ndarray]]
ResType = Union[Dict, List[Dict], InstanceData, List[InstanceData]]


class BaseDet3DInferencer(BaseInferencer):
"""Base 3D object detection inferencer.

Args:
model (str, optional): Path to the config file or the model name
defined in metafile. For example, it could be
"pgd-kitti" or
"configs/pgd/pgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d.py".
ZCMax marked this conversation as resolved.
Show resolved Hide resolved
If model is not specified, user must provide the
`weights` saved by MMEngine which contains the config string.
Defaults to None.
weights (str, optional): Path to the checkpoint. If it is not specified
and model is a model name of metafile, the weights will be loaded
from metafile. Defaults to None.
device (str, optional): Device to run inference. If None, the available
device will be automatically used. Defaults to None.
scope (str, optional): The scope of the model. Defaults to mmdet3d.
palette (str): Color palette used for visualization. The order of
priority is palette -> config -> checkpoint. Defaults to 'none'.
"""
ZCMax marked this conversation as resolved.
Show resolved Hide resolved

preprocess_kwargs: set = set()
forward_kwargs: set = set()
visualize_kwargs: set = {
'return_vis', 'show', 'wait_time', 'draw_pred', 'pred_score_thr',
'img_out_dir'
}
postprocess_kwargs: set = {
'print_result', 'pred_out_file', 'return_datasample'
}

def __init__(self,
model: Union[ModelType, str, None] = None,
weights: Optional[str] = None,
device: Optional[str] = None,
scope: Optional[str] = 'mmdet3d',
palette: str = 'none') -> None:
self.palette = palette
register_all_modules()
super().__init__(
model=model, weights=weights, device=device, scope=scope)

def _convert_syncbn(self, cfg: ConfigType):
"""Convert config's naiveSyncBN to BN.

Args:
config (str or :obj:`mmengine.Config`): Config file path
or the config object.
"""
if isinstance(cfg, dict):
for item in cfg:
if item == 'norm_cfg':
cfg[item]['type'] = cfg[item]['type']. \
replace('naiveSyncBN', 'BN')
else:
self._convert_syncbn(cfg[item])

def _init_model(
self,
cfg: ConfigType,
weights: str,
device: str = 'cpu',
) -> nn.Module:
self._convert_syncbn(cfg.model)
cfg.model.train_cfg = None
model = MODELS.build(cfg.model)

checkpoint = load_checkpoint(model, weights, map_location='cpu')
if 'dataset_meta' in checkpoint.get('meta', {}):
# mmdet3d 1.x
model.dataset_meta = checkpoint['meta']['dataset_meta']
elif 'CLASSES' in checkpoint.get('meta', {}):
# < mmdet3d 1.x
classes = checkpoint['meta']['CLASSES']
model.dataset_meta = {'CLASSES': classes}

if 'PALETTE' in checkpoint.get('meta', {}): # 3D Segmentor
model.dataset_meta['PALETTE'] = checkpoint['meta']['PALETTE']
else:
# < mmdet3d 1.x
model.dataset_meta = {'CLASSES': cfg.class_names}

if 'PALETTE' in checkpoint.get('meta', {}): # 3D Segmentor
model.dataset_meta['PALETTE'] = checkpoint['meta']['PALETTE']

model.cfg = cfg # save the config in the model for convenience
model.to(device)
model.eval()
return model

def _get_transform_idx(self, pipeline_cfg: ConfigType, name: str) -> int:
"""Returns the index of the transform in a pipeline.

If the transform is not found, returns -1.
"""
for i, transform in enumerate(pipeline_cfg):
if transform['type'] == name:
return i
return -1

def _init_visualizer(self, cfg: ConfigType) -> Optional[Visualizer]:
visualizer = super()._init_visualizer(cfg)
visualizer.dataset_meta = self.model.dataset_meta
return visualizer

def __call__(self,
inputs: InputsType,
return_datasamples: bool = False,
batch_size: int = 1,
return_vis: bool = False,
show: bool = False,
wait_time: int = 0,
draw_pred: bool = True,
pred_score_thr: float = 0.3,
img_out_dir: str = '',
print_result: bool = False,
pred_out_file: str = '',
**kwargs) -> dict:
"""Call the inferencer.
Args:
inputs (InputsType): Inputs for the inferencer.
return_datasamples (bool): Whether to return results as
:obj:`BaseDataElement`. Defaults to False.
batch_size (int): Inference batch size. Defaults to 1.
return_vis (bool): Whether to return the visualization result.
Defaults to False.
show (bool): Whether to display the visualization results in a
ZCMax marked this conversation as resolved.
Show resolved Hide resolved
popup window. Defaults to False.
wait_time (float): The interval of show (s). Defaults to 0.
draw_pred (bool): Whether to draw predicted bounding boxes.
Defaults to True.
pred_score_thr (float): Minimum score of bboxes to draw.
Defaults to 0.3.
img_out_dir (str): Output directory of visualization results.
If left as empty, no file will be saved. Defaults to ''.
print_result (bool): Whether to print the inference result w/o
visualization to the console. Defaults to False.
pred_out_file: File to save the inference results w/o
visualization. If left as empty, no file will be saved.
Defaults to ''.
**kwargs: Other keyword arguments passed to :meth:`preprocess`,
:meth:`forward`, :meth:`visualize` and :meth:`postprocess`.
Each key in kwargs should be in the corresponding set of
``preprocess_kwargs``, ``forward_kwargs``, ``visualize_kwargs``
and ``postprocess_kwargs``.
Returns:
dict: Inference and visualization results.
"""
return super().__call__(
inputs,
return_datasamples,
batch_size,
return_vis=return_vis,
show=show,
wait_time=wait_time,
draw_pred=draw_pred,
pred_score_thr=pred_score_thr,
img_out_dir=img_out_dir,
print_result=print_result,
pred_out_file=pred_out_file,
**kwargs)

def postprocess(
self,
preds: PredType,
visualization: Optional[List[np.ndarray]] = None,
return_datasample: bool = False,
print_result: bool = False,
pred_out_file: str = '',
) -> Union[ResType, Tuple[ResType, np.ndarray]]:
"""Process the predictions and visualization results from ``forward``
and ``visualize``.
This method should be responsible for the following tasks:
1. Convert datasamples into a json-serializable dict if needed.
2. Pack the predictions and visualization results and return them.
3. Dump or log the predictions.
Args:
preds (List[Dict]): Predictions of the model.
visualization (Optional[np.ndarray]): Visualized predictions.
return_datasample (bool): Whether to use Datasample to store
inference results. If False, dict will be used.
print_result (bool): Whether to print the inference result w/o
visualization to the console. Defaults to False.
pred_out_file: File to save the inference results w/o
visualization. If left as empty, no file will be saved.
Defaults to ''.
Returns:
dict: Inference and visualization results with key ``predictions``
and ``visualization``.
- ``visualization`` (Any): Returned by :meth:`visualize`.
- ``predictions`` (dict or DataSample): Returned by
:meth:`forward` and processed in :meth:`postprocess`.
If ``return_datasample=False``, it usually should be a
json-serializable dict containing only basic data elements such
as strings and numbers.
"""
result_dict = {}
results = preds
if not return_datasample:
results = []
for pred in preds:
result = self.pred2dict(pred)
results.append(result)
result_dict['predictions'] = results
if print_result:
print(result_dict)
if pred_out_file != '':
mmengine.dump(result_dict, pred_out_file)
result_dict['visualization'] = visualization
return result_dict

def pred2dict(self, data_sample: InstanceData) -> Dict:
"""Extract elements necessary to represent a prediction into a
dictionary.

It's better to contain only basic data elements such as strings and
numbers in order to guarantee it's json-serializable.
"""
pred_instances = data_sample.pred_instances_3d.numpy()
result = {
'bboxes_3d': pred_instances.bboxes_3d.tensor.numpy().tolist(),
'labels_3d': pred_instances.labels_3d.tolist(),
'scores_3d': pred_instances.scores_3d.tolist()
}

return result
ZCMax marked this conversation as resolved.
Show resolved Hide resolved
Loading