Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dev 1.x #2176

Merged
merged 3 commits into from
Apr 6, 2023
Merged

Dev 1.x #2176

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 42 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -123,6 +123,48 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-

Please refer to the [release notes](https://github.com/open-mmlab/mmpose/releases/tag/v1.0.0) for more updates brought by MMPose v1.0.0!

## 0.x -> 1.x 迁移进度

MMPose v1.0.0 is a major update, including many API and config file changes. Currently, a part of the algorithms have been migrated to v1.0.0, and the remaining algorithms will be completed in subsequent versions. We will show the migration progress in the following list.

<details close>
<summary><b>Migration Progress</b></summary>

| Algorithm | Status |
| :--- | :---: |
| MTUT (CVPR 2019) | |
| MSPN (ArXiv 2019)| done |
| InterNet (ECCV 2020) | |
| DEKR (CVPR 2021) | done |
| HigherHRNet (CVPR 2020) | |
| DeepPose (CVPR 2014) | done |
| RLE (ICCV 2021) | done |
| SoftWingloss (TIP 2021) | |
| VideoPose3D (CVPR 2019) | |
| Hourglass (ECCV 2016) | done |
| LiteHRNet (CVPR 2021) | done |
| AdaptiveWingloss (ICCV 2019) | done |
| SimpleBaseline2D (ECCV 2018) | done |
| PoseWarper (NeurIPS 2019) | |
| SimpleBaseline3D (ICCV 2017) | |
| HMR (CVPR 2018) | |
| UDP (CVPR 2020) | done |
| VIPNAS (CVPR 2021) | done |
| Wingloss (CVPR 2018) | |
| DarkPose (CVPR 2020) | done |
| Associative Embedding (NIPS 2017) | in progress |
| VoxelPose (ECCV 2020) | |
| RSN (ECCV 2020) | done |
| CID (CVPR 2022) | done |
| CPM (CVPR 2016) | done |
| HRNet (CVPR 2019) | done |
| HRNetv2 (TPAMI 2019) | done |
| SCNet (CVPR 2020) | done |

</details>

If your algorithm has not been migrated, you can continue to use the [0.x branch](https://github.com/open-mmlab/mmpose/tree/0.x) and [old documentation](https://mmpose.readthedocs.io/en/0.x/).

## Installation

Please refer to [installation.md](https://mmpose.readthedocs.io/en/latest/installation.html) for more detailed installation and dataset preparation.
Expand Down
44 changes: 42 additions & 2 deletions README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -121,6 +121,47 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-

请查看完整的 [版本说明](https://github.com/open-mmlab/mmpose/releases/tag/v1.0.0) 以了解更多 MMPose v1.0.0 带来的更新!

## 0.x / 1.x 迁移

MMPose v1.0.0 是一个重大更新,包括了大量的 API 和配置文件的变化。目前 v1.0.0 中已经完成了一部分算法的迁移工作,剩余的算法将在后续的版本中陆续完成,我们将在下面的列表中展示迁移进度。

<details close>
<summary><b>迁移进度</b></summary>

| 算法名称 | 迁移进度 |
| :--- | :---: |
| MTUT (CVPR 2019) | |
| MSPN (ArXiv 2019)| done |
| InterNet (ECCV 2020) | |
| DEKR (CVPR 2021) | done |
| HigherHRNet (CVPR 2020) | |
| DeepPose (CVPR 2014) | done |
| RLE (ICCV 2021) | done |
| SoftWingloss (TIP 2021) | |
| VideoPose3D (CVPR 2019) | |
| Hourglass (ECCV 2016) | done |
| LiteHRNet (CVPR 2021) | done |
| AdaptiveWingloss (ICCV 2019) | done |
| SimpleBaseline2D (ECCV 2018) | done |
| PoseWarper (NeurIPS 2019) | |
| SimpleBaseline3D (ICCV 2017) | |
| HMR (CVPR 2018) | |
| UDP (CVPR 2020) | done |
| VIPNAS (CVPR 2021) | done |
| Wingloss (CVPR 2018) | |
| DarkPose (CVPR 2020) | done |
| Associative Embedding (NIPS 2017) | in progress |
| VoxelPose (ECCV 2020) | |
| RSN (ECCV 2020) | done |
| CID (CVPR 2022) | done |
| CPM (CVPR 2016) | done |
| HRNet (CVPR 2019) | done |
| HRNetv2 (TPAMI 2019) | done |
| SCNet (CVPR 2020) | done |

</details>

如果您使用的算法还没有完成迁移,您也可以继续使用访问 [0.x 分支](https://github.com/open-mmlab/mmpose/tree/0.x) 和 [旧版文档](https://mmpose.readthedocs.io/zh_CN/0.x/)
## 安装

关于安装的详细说明请参考[安装文档](https://mmpose.readthedocs.io/zh_CN/latest/installation.html)。
Expand Down Expand Up @@ -321,8 +362,7 @@ MMPose 是一款由不同学校和公司共同贡献的开源项目。我们感
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),联络 OpenMMLab [官方微信小助手](https://user-images.githubusercontent.com/25839884/205872898-e2e6009d-c6bb-4d27-8d07-117e697a3da8.jpg)或加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=K0QI8ByU)

<div align="center">
<img src="https://user-images.githubusercontent.com/25839884/205870927-39f4946d-8751-4219-a4c0-740117558fd7.jpg" height="400"><img src="https://user-images.githubusercontent.com/25839884/205872898-e2e6009d-c6bb-4d27-8d07-117e697a3da8.jpg" height="400"><img src="https://user-images.githubusercontent.com/25839884/203904835-62392033-02d4-4c73-a68c-c9e4c1e2b07f.jpg
" height="400">
<img src="https://user-images.githubusercontent.com/25839884/205870927-39f4946d-8751-4219-a4c0-740117558fd7.jpg" height="400"><img src="https://user-images.githubusercontent.com/25839884/205872898-e2e6009d-c6bb-4d27-8d07-117e697a3da8.jpg" height="400"><img src="https://user-images.githubusercontent.com/25839884/203904835-62392033-02d4-4c73-a68c-c9e4c1e2b07f.jpg" height="400">
</div>

我们会在 OpenMMLab 社区为大家
Expand Down
12 changes: 6 additions & 6 deletions docs/en/installation.md
Original file line number Diff line number Diff line change
Expand Up @@ -59,13 +59,13 @@ conda install pytorch torchvision cpuonly -c pytorch
```shell
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0rc4"
mim install "mmcv>=2.0.0"
```

Note that some of the demo scripts in MMPose require [MMDetection](https://github.com/open-mmlab/mmdetection) (mmdet) for human detection. If you want to run these demo scripts with mmdet, you can easily install mmdet as a dependency by running:

```shell
mim install "mmdet>=3.0.0rc6"
mim install "mmdet>=3.0.0"
```

## Best Practices
Expand All @@ -89,7 +89,7 @@ pip install -v -e .
To use mmpose as a dependency or third-party package, install it with pip:

```shell
mim install "mmpose>=1.0.0rc1"
mim install "mmpose>=1.0.0"
```

## Verify the installation
Expand Down Expand Up @@ -173,7 +173,7 @@ To install MMCV with pip instead of MIM, please follow [MMCV installation guides
For example, the following command install mmcv built for PyTorch 1.10.x and CUDA 11.3.

```shell
pip install 'mmcv>=2.0.0rc1' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
pip install 'mmcv>=2.0.0' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
```

### Install on CPU-only platforms
Expand All @@ -192,7 +192,7 @@ thus we only need to install MMEngine, MMCV and MMPose with the following comman
```shell
!pip3 install openmim
!mim install mmengine
!mim install "mmcv>=2.0.0rc1"
!mim install "mmcv>=2.0.0"
```

**Step 2.** Install MMPose from the source.
Expand All @@ -208,7 +208,7 @@ thus we only need to install MMEngine, MMCV and MMPose with the following comman
```python
import mmpose
print(mmpose.__version__)
# Example output: 1.0.0rc0
# Example output: 1.0.0
```

```{note}
Expand Down
12 changes: 6 additions & 6 deletions docs/zh_cn/installation.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,13 +57,13 @@ conda install pytorch torchvision cpuonly -c pytorch
```shell
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0rc1"
mim install "mmcv>=2.0.0"
```

请注意,MMPose 中的一些推理示例脚本需要使用 [MMDetection](https://github.com/open-mmlab/mmdetection) (mmdet) 检测人体。如果您想运行这些示例脚本,可以通过运行以下命令安装 mmdet:

```shell
mim install "mmdet>=3.0.0rc0"
mim install "mmdet>=3.0.0"
```

## 最佳实践
Expand All @@ -88,7 +88,7 @@ pip install -v -e .
如果只是希望调用 MMPose 的接口,或者在自己的项目中导入 MMPose 中的模块。直接使用 mim 安装即可。

```shell
mim install "mmpose>=1.0.0rc0"
mim install "mmpose>=1.0.0"
```

## 验证安装
Expand Down Expand Up @@ -180,7 +180,7 @@ MMCV 包含 C++ 和 CUDA 扩展,因此其对 PyTorch 的依赖比较复杂。M
举个例子,如下命令将会安装基于 PyTorch 1.10.x 和 CUDA 11.3 编译的 mmcv。

```shell
pip install 'mmcv>=2.0.0rc1' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
pip install 'mmcv>=2.0.0' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
```

### 在 CPU 环境中安装
Expand All @@ -198,7 +198,7 @@ MMPose 可以仅在 CPU 环境中安装,在 CPU 模式下,您可以完成训
```shell
!pip3 install openmim
!mim install mmengine
!mim install "mmcv>=2.0.0rc1"
!mim install "mmcv>=2.0.0"
```

**第 2 步** 从源码安装 mmpose
Expand All @@ -214,7 +214,7 @@ MMPose 可以仅在 CPU 环境中安装,在 CPU 模式下,您可以完成训
```python
import mmpose
print(mmpose.__version__)
# 预期输出: 1.0.0rc0
# 预期输出: 1.0.0
```

```{note}
Expand Down
2 changes: 1 addition & 1 deletion mmpose/version.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Copyright (c) Open-MMLab. All rights reserved.

__version__ = '1.0.0rc1'
__version__ = '1.0.0'
short_version = __version__


Expand Down