自己的数据集转换成coco数据集的格式使用不了MAE训练 #706
-
这是我的配置 在MAE的config配置文件中按照教程修改为 # >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>>
_base_ = [
'../_base_/models/mae_vit-base-p16.py',
# '../_base_/datasets/imagenet_mae.py',
'../_base_/schedules/adamw_coslr-200e_in1k.py',
'../_base_/default_runtime.py',
]
# custom dataset
dataset_type = 'mmdet.CocoDataset'
data_root = 'data/coco/'
file_client_args = dict(backend='disk')
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='RandomResizedCrop',
size=224,
scale=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
]
train_dataloader = dict(
batch_size=128,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
pipeline=train_pipeline))
# <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<<
# optimizer wrapper
optimizer = dict(
type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(
custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,
convert_to_iter_based=True)
]
# runtime settings
# pre-train for 400 epochs
train_cfg = dict(max_epochs=400)
default_hooks = dict(
logger=dict(type='LoggerHook', interval=100),
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
# randomness
randomness = dict(seed=0, diff_rank_seed=True)
resume = True 因为用了1个gpu,添加了 _base_ = 'mae_vit-base-p16_8xb512-coslr-400e_incoco.py'
# dataset
data = dict(
samples_per_gpu=32,
workers_per_gpu=2,
train=dict(
data_source=dict(
data_prefix='data/coco/train2017',
ann_file='data/coco/annotations/instances_train2017.json',
)
)
)
# optimizer
optimizer = dict(
lr=1.5e-4 * 4096 / 256 * (32 / 512 * 8),
)
runner = dict(max_epochs=1) 使用训练 warnings.warn(
Traceback (most recent call last):
File "tools/train.py", line 9, in <module>
from mmselfsup.utils import register_all_modules
File "/root/mmselfsup/mmselfsup/__init__.py", line 2, in <module>
import mmcls
File "/root/miniconda3/lib/python3.8/site-packages/mmcls/__init__.py", line 10, in <module>
mmcv_version = digit_version(mmcv.__version__)
AttributeError: module 'mmcv' has no attribute '__version__'
ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 17238) of binary: /root/miniconda3/bin/python
Traceback (most recent call last):
File "/root/miniconda3/lib/python3.8/runpy.py", line 194, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/root/miniconda3/lib/python3.8/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/launch.py", line 195, in <module>
main()
File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/launch.py", line 191, in main
launch(args)
File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/launch.py", line 176, in launch
run(args)
File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/run.py", line 753, in run
elastic_launch(
File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 246, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
tools/train.py FAILED
------------------------------------------------------------
Failures:
<NO_OTHER_FAILURES>
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2023-02-27_17:22:10
host : autodl-container-815011ac52-c32bb38f
rank : 0 (local_rank: 0)
exitcode : 1 (pid: 17238)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================ |
Beta Was this translation helpful? Give feedback.
Replies: 3 comments
-
重新安装了以前版本的mmselfsup,配置如下 mmcls 0.24.1 配置文件和上面相同,新的报错 warnings.warn(
/root/miniconda3/lib/python3.8/site-packages/mmcv/__init__.py:20: UserWarning: On January 1, 2023, MMCV will release v2.0.0, in which it will remove components related to the training process and add a data transformation module. In addition, it will rename the package names mmcv to mmcv-lite and mmcv-full to mmcv. See https://github.com/open-mmlab/mmcv/blob/master/docs/en/compatibility.md for more details.
warnings.warn(
fatal: not a git repository (or any of the parent directories): .git
2023-02-27 20:38:47,675 - mmselfsup - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.8.10 (default, Jun 4 2021, 15:09:15) [GCC 7.5.0]
CUDA available: True
GPU 0: NVIDIA GeForce RTX 3080
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.3, V11.3.109
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
PyTorch: 1.13.0+cu117
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.7
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
- CuDNN 8.5
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.7, CUDNN_VERSION=8.5.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.14.0+cu117
OpenCV: 4.6.0
MMCV: 1.7.1
MMCV Compiler: GCC 9.3
MMCV CUDA Compiler: 11.7
MMSelfSup: 0.11.0+
------------------------------------------------------------
2023-02-27 20:38:47,828 - mmselfsup - INFO - Distributed training: True
2023-02-27 20:38:47,974 - mmselfsup - INFO - Config:
model = dict(
type='MAE',
backbone=dict(type='MAEViT', arch='b', patch_size=16, mask_ratio=0.75),
neck=dict(
type='MAEPretrainDecoder',
patch_size=16,
in_chans=3,
embed_dim=768,
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=16,
mlp_ratio=4.0),
head=dict(type='MAEPretrainHead', norm_pix=True, patch_size=16))
optimizer = dict(type='AdamW', lr=0.0012, betas=(0.9, 0.95), weight_decay=0.05)
optimizer_config = dict()
lr_config = dict(
policy='CosineAnnealing',
min_lr=0.0,
warmup='linear',
warmup_iters=40,
warmup_ratio=0.0001,
warmup_by_epoch=True)
runner = dict(type='EpochBasedRunner', max_epochs=1)
checkpoint_config = dict(interval=10)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
cudnn_benchmark = True
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
persistent_workers = True
opencv_num_threads = 0
mp_start_method = 'fork'
dataset_type = 'mmdet.CocoDataset'
data_root = 'data/coco/'
file_client_args = dict(backend='disk')
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
dict(
type='RandomResizedCrop',
size=224,
scale=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
]
train_dataloader = dict(
batch_size=128,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type='mmdet.CocoDataset',
data_root='data/coco/',
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
pipeline=[
dict(
type='LoadImageFromFile',
file_client_args=dict(backend='disk')),
dict(
type='RandomResizedCrop',
size=224,
scale=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
]))
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='AdamW', lr=0.0024, betas=(0.9, 0.95), weight_decay=0.05),
paramwise_cfg=dict(
custom_keys=dict(
ln=dict(decay_mult=0.0),
bias=dict(decay_mult=0.0),
pos_embed=dict(decay_mult=0.0),
mask_token=dict(decay_mult=0.0),
cls_token=dict(decay_mult=0.0))))
param_scheduler = [
dict(
type='LinearLR',
start_factor=0.0001,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,
convert_to_iter_based=True)
]
train_cfg = dict(max_epochs=400)
default_hooks = dict(
logger=dict(type='LoggerHook', interval=100),
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
randomness = dict(seed=0, diff_rank_seed=True)
resume = True
data = dict(
samples_per_gpu=32,
workers_per_gpu=2,
train=dict(
data_source=dict(
data_prefix='data/coco/train2017',
ann_file='data/coco/annotations/train2017.json')))
work_dir = 'work_dirs/selfsup/mae/mae_vit-base-p16_1xb32-coslr-1e_incoco/'
auto_resume = False
gpu_ids = range(0, 1)
2023-02-27 20:38:47,975 - mmselfsup - INFO - Set random seed to 0, deterministic: False
/root/miniconda3/lib/python3.8/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3190.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
2023-02-27 20:38:50,243 - mmcv - INFO -
backbone.cls_token - torch.Size([1, 1, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,243 - mmcv - INFO -
backbone.pos_embed - torch.Size([1, 197, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,243 - mmcv - INFO -
backbone.patch_embed.projection.weight - torch.Size([768, 3, 16, 16]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,243 - mmcv - INFO -
backbone.patch_embed.projection.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,243 - mmcv - INFO -
backbone.layers.0.ln1.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,243 - mmcv - INFO -
backbone.layers.0.ln1.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,243 - mmcv - INFO -
backbone.layers.0.attn.qkv.weight - torch.Size([2304, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,243 - mmcv - INFO -
backbone.layers.0.attn.qkv.bias - torch.Size([2304]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,243 - mmcv - INFO -
backbone.layers.0.attn.proj.weight - torch.Size([768, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,243 - mmcv - INFO -
backbone.layers.0.attn.proj.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,243 - mmcv - INFO -
backbone.layers.0.ln2.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,243 - mmcv - INFO -
backbone.layers.0.ln2.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,243 - mmcv - INFO -
backbone.layers.0.ffn.layers.0.0.weight - torch.Size([3072, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,243 - mmcv - INFO -
backbone.layers.0.ffn.layers.0.0.bias - torch.Size([3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.0.ffn.layers.1.weight - torch.Size([768, 3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.0.ffn.layers.1.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.1.ln1.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.1.ln1.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.1.attn.qkv.weight - torch.Size([2304, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.1.attn.qkv.bias - torch.Size([2304]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.1.attn.proj.weight - torch.Size([768, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.1.attn.proj.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.1.ln2.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.1.ln2.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.1.ffn.layers.0.0.weight - torch.Size([3072, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.1.ffn.layers.0.0.bias - torch.Size([3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.1.ffn.layers.1.weight - torch.Size([768, 3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.1.ffn.layers.1.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.2.ln1.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.2.ln1.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.2.attn.qkv.weight - torch.Size([2304, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.2.attn.qkv.bias - torch.Size([2304]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.2.attn.proj.weight - torch.Size([768, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.2.attn.proj.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.2.ln2.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.2.ln2.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.2.ffn.layers.0.0.weight - torch.Size([3072, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.2.ffn.layers.0.0.bias - torch.Size([3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.2.ffn.layers.1.weight - torch.Size([768, 3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,244 - mmcv - INFO -
backbone.layers.2.ffn.layers.1.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.3.ln1.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.3.ln1.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.3.attn.qkv.weight - torch.Size([2304, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.3.attn.qkv.bias - torch.Size([2304]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.3.attn.proj.weight - torch.Size([768, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.3.attn.proj.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.3.ln2.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.3.ln2.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.3.ffn.layers.0.0.weight - torch.Size([3072, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.3.ffn.layers.0.0.bias - torch.Size([3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.3.ffn.layers.1.weight - torch.Size([768, 3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.3.ffn.layers.1.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.4.ln1.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.4.ln1.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.4.attn.qkv.weight - torch.Size([2304, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.4.attn.qkv.bias - torch.Size([2304]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.4.attn.proj.weight - torch.Size([768, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.4.attn.proj.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.4.ln2.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.4.ln2.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.4.ffn.layers.0.0.weight - torch.Size([3072, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.4.ffn.layers.0.0.bias - torch.Size([3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.4.ffn.layers.1.weight - torch.Size([768, 3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.4.ffn.layers.1.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.5.ln1.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,245 - mmcv - INFO -
backbone.layers.5.ln1.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.5.attn.qkv.weight - torch.Size([2304, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.5.attn.qkv.bias - torch.Size([2304]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.5.attn.proj.weight - torch.Size([768, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.5.attn.proj.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.5.ln2.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.5.ln2.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.5.ffn.layers.0.0.weight - torch.Size([3072, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.5.ffn.layers.0.0.bias - torch.Size([3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.5.ffn.layers.1.weight - torch.Size([768, 3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.5.ffn.layers.1.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.6.ln1.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.6.ln1.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.6.attn.qkv.weight - torch.Size([2304, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.6.attn.qkv.bias - torch.Size([2304]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.6.attn.proj.weight - torch.Size([768, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.6.attn.proj.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.6.ln2.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.6.ln2.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.6.ffn.layers.0.0.weight - torch.Size([3072, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.6.ffn.layers.0.0.bias - torch.Size([3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.6.ffn.layers.1.weight - torch.Size([768, 3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.6.ffn.layers.1.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.7.ln1.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.7.ln1.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,246 - mmcv - INFO -
backbone.layers.7.attn.qkv.weight - torch.Size([2304, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.7.attn.qkv.bias - torch.Size([2304]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.7.attn.proj.weight - torch.Size([768, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.7.attn.proj.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.7.ln2.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.7.ln2.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.7.ffn.layers.0.0.weight - torch.Size([3072, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.7.ffn.layers.0.0.bias - torch.Size([3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.7.ffn.layers.1.weight - torch.Size([768, 3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.7.ffn.layers.1.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.8.ln1.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.8.ln1.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.8.attn.qkv.weight - torch.Size([2304, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.8.attn.qkv.bias - torch.Size([2304]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.8.attn.proj.weight - torch.Size([768, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.8.attn.proj.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.8.ln2.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.8.ln2.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.8.ffn.layers.0.0.weight - torch.Size([3072, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.8.ffn.layers.0.0.bias - torch.Size([3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.8.ffn.layers.1.weight - torch.Size([768, 3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.8.ffn.layers.1.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.9.ln1.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.9.ln1.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.9.attn.qkv.weight - torch.Size([2304, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.9.attn.qkv.bias - torch.Size([2304]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,247 - mmcv - INFO -
backbone.layers.9.attn.proj.weight - torch.Size([768, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.9.attn.proj.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.9.ln2.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.9.ln2.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.9.ffn.layers.0.0.weight - torch.Size([3072, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.9.ffn.layers.0.0.bias - torch.Size([3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.9.ffn.layers.1.weight - torch.Size([768, 3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.9.ffn.layers.1.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.10.ln1.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.10.ln1.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.10.attn.qkv.weight - torch.Size([2304, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.10.attn.qkv.bias - torch.Size([2304]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.10.attn.proj.weight - torch.Size([768, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.10.attn.proj.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.10.ln2.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.10.ln2.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.10.ffn.layers.0.0.weight - torch.Size([3072, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.10.ffn.layers.0.0.bias - torch.Size([3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.10.ffn.layers.1.weight - torch.Size([768, 3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.10.ffn.layers.1.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.11.ln1.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.11.ln1.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.11.attn.qkv.weight - torch.Size([2304, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.11.attn.qkv.bias - torch.Size([2304]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.11.attn.proj.weight - torch.Size([768, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.11.attn.proj.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.11.ln2.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,248 - mmcv - INFO -
backbone.layers.11.ln2.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,249 - mmcv - INFO -
backbone.layers.11.ffn.layers.0.0.weight - torch.Size([3072, 768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,249 - mmcv - INFO -
backbone.layers.11.ffn.layers.0.0.bias - torch.Size([3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,249 - mmcv - INFO -
backbone.layers.11.ffn.layers.1.weight - torch.Size([768, 3072]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,249 - mmcv - INFO -
backbone.layers.11.ffn.layers.1.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEViT
2023-02-27 20:38:50,249 - mmcv - INFO -
backbone.ln1.weight - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,249 - mmcv - INFO -
backbone.ln1.bias - torch.Size([768]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.mask_token - torch.Size([1, 1, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_pos_embed - torch.Size([1, 197, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_embed.weight - torch.Size([512, 768]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_embed.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.0.ln1.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.0.ln1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.0.attn.qkv.weight - torch.Size([1536, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.0.attn.qkv.bias - torch.Size([1536]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.0.attn.proj.weight - torch.Size([512, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.0.attn.proj.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.0.ln2.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.0.ln2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.0.ffn.layers.0.0.weight - torch.Size([2048, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.0.ffn.layers.0.0.bias - torch.Size([2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.0.ffn.layers.1.weight - torch.Size([512, 2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.0.ffn.layers.1.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.1.ln1.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.1.ln1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.1.attn.qkv.weight - torch.Size([1536, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,249 - mmcv - INFO -
neck.decoder_blocks.1.attn.qkv.bias - torch.Size([1536]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.1.attn.proj.weight - torch.Size([512, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.1.attn.proj.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.1.ln2.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.1.ln2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.1.ffn.layers.0.0.weight - torch.Size([2048, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.1.ffn.layers.0.0.bias - torch.Size([2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.1.ffn.layers.1.weight - torch.Size([512, 2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.1.ffn.layers.1.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.2.ln1.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.2.ln1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.2.attn.qkv.weight - torch.Size([1536, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.2.attn.qkv.bias - torch.Size([1536]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.2.attn.proj.weight - torch.Size([512, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.2.attn.proj.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.2.ln2.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.2.ln2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.2.ffn.layers.0.0.weight - torch.Size([2048, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.2.ffn.layers.0.0.bias - torch.Size([2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.2.ffn.layers.1.weight - torch.Size([512, 2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.2.ffn.layers.1.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.3.ln1.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.3.ln1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.3.attn.qkv.weight - torch.Size([1536, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.3.attn.qkv.bias - torch.Size([1536]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.3.attn.proj.weight - torch.Size([512, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,250 - mmcv - INFO -
neck.decoder_blocks.3.attn.proj.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.3.ln2.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.3.ln2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.3.ffn.layers.0.0.weight - torch.Size([2048, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.3.ffn.layers.0.0.bias - torch.Size([2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.3.ffn.layers.1.weight - torch.Size([512, 2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.3.ffn.layers.1.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.4.ln1.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.4.ln1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.4.attn.qkv.weight - torch.Size([1536, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.4.attn.qkv.bias - torch.Size([1536]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.4.attn.proj.weight - torch.Size([512, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.4.attn.proj.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.4.ln2.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.4.ln2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.4.ffn.layers.0.0.weight - torch.Size([2048, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.4.ffn.layers.0.0.bias - torch.Size([2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.4.ffn.layers.1.weight - torch.Size([512, 2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.4.ffn.layers.1.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.5.ln1.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.5.ln1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.5.attn.qkv.weight - torch.Size([1536, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.5.attn.qkv.bias - torch.Size([1536]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.5.attn.proj.weight - torch.Size([512, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.5.attn.proj.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.5.ln2.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,251 - mmcv - INFO -
neck.decoder_blocks.5.ln2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.5.ffn.layers.0.0.weight - torch.Size([2048, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.5.ffn.layers.0.0.bias - torch.Size([2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.5.ffn.layers.1.weight - torch.Size([512, 2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.5.ffn.layers.1.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.6.ln1.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.6.ln1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.6.attn.qkv.weight - torch.Size([1536, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.6.attn.qkv.bias - torch.Size([1536]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.6.attn.proj.weight - torch.Size([512, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.6.attn.proj.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.6.ln2.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.6.ln2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.6.ffn.layers.0.0.weight - torch.Size([2048, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.6.ffn.layers.0.0.bias - torch.Size([2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.6.ffn.layers.1.weight - torch.Size([512, 2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.6.ffn.layers.1.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.7.ln1.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.7.ln1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.7.attn.qkv.weight - torch.Size([1536, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.7.attn.qkv.bias - torch.Size([1536]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.7.attn.proj.weight - torch.Size([512, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.7.attn.proj.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.7.ln2.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.7.ln2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.7.ffn.layers.0.0.weight - torch.Size([2048, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,252 - mmcv - INFO -
neck.decoder_blocks.7.ffn.layers.0.0.bias - torch.Size([2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,253 - mmcv - INFO -
neck.decoder_blocks.7.ffn.layers.1.weight - torch.Size([512, 2048]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,253 - mmcv - INFO -
neck.decoder_blocks.7.ffn.layers.1.bias - torch.Size([512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,253 - mmcv - INFO -
neck.ln1.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,253 - mmcv - INFO -
neck.ln1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of MAE
2023-02-27 20:38:50,253 - mmcv - INFO -
neck.decoder_pred.weight - torch.Size([768, 512]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
2023-02-27 20:38:50,253 - mmcv - INFO -
neck.decoder_pred.bias - torch.Size([768]):
Initialized by user-defined `init_weights` in MAEPretrainDecoder
Traceback (most recent call last):
File "tools/train.py", line 200, in <module>
main()
File "tools/train.py", line 182, in main
datasets = [build_dataset(cfg.data.train)]
File "/root/mmselfsup/mmselfsup/datasets/builder.py", line 39, in build_dataset
elif cfg['type'] == 'RepeatDataset':
File "/root/miniconda3/lib/python3.8/site-packages/mmcv/utils/config.py", line 38, in __missing__
raise KeyError(name)
KeyError: 'type'
ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 57177) of binary: /root/miniconda3/bin/python
Traceback (most recent call last):
File "/root/miniconda3/lib/python3.8/runpy.py", line 194, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/root/miniconda3/lib/python3.8/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/launch.py", line 195, in <module>
main()
File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/launch.py", line 191, in main
launch(args)
File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/launch.py", line 176, in launch
run(args)
File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/run.py", line 753, in run
elastic_launch(
File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 246, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
tools/train.py FAILED
------------------------------------------------------------
Failures:
<NO_OTHER_FAILURES>
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2023-02-27_20:38:54
host : autodl-container-0bb111be52-079f414c
rank : 0 (local_rank: 0)
exitcode : 1 (pid: 57177)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================ |
Beta Was this translation helpful? Give feedback.
-
Your format in config |
Beta Was this translation helpful? Give feedback.
-
It is recommended to use 1.0.0rc version, it seems your installation of mmcv met some problem, please clear the mmcv in the environment then install it with the guidance in https://github.com/open-mmlab/mmcv/tree/2.x |
Beta Was this translation helpful? Give feedback.
It is recommended to use 1.0.0rc version, it seems your installation of mmcv met some problem, please clear the mmcv in the environment then install it with the guidance in https://github.com/open-mmlab/mmcv/tree/2.x