Skip to content

Commit

Permalink
Merge pull request #6155 from openjournals/joss.06868
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Nov 18, 2024
2 parents fd9e4ff + 78b597b commit 6f530cc
Show file tree
Hide file tree
Showing 4 changed files with 889 additions and 0 deletions.
323 changes: 323 additions & 0 deletions joss.06868/10.21105.joss.06868.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,323 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241118162052-e1aeb4b73de75d903c7c7759f30abaa404ed347c</doi_batch_id>
<timestamp>20241118162052</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>admin@theoj.org</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>11</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>103</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>APackOfTheClones: Visualization of clonal expansion
with circle packing</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Qile</given_name>
<surname>Yang</surname>
<affiliations>
<institution><institution_name>University of California, Berkeley, Berkeley, CA 94720, United States of America</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0009-0005-0148-2499</ORCID>
</person_name>
</contributors>
<publication_date>
<month>11</month>
<day>18</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6868</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06868</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.13916956</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6868</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06868</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06868</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06868.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="huang2022role">
<article_title>The role of single-cell profiling and deep
immunophenotyping in understanding immune therapy
cardiotoxicity</article_title>
<author>Huang</author>
<journal_title>Cardio Oncology</journal_title>
<issue>5</issue>
<volume>4</volume>
<doi>10.1016/j.jaccao.2022.08.012</doi>
<cYear>2022</cYear>
<unstructured_citation>Huang, Y. V., Waliany, S., Lee, D.,
Galdos, F. X., Witteles, R. M., Neal, J. W., Fan, A. C., Maecker, H. T.,
Nguyen, P. K., Wu, S. M., &amp; others. (2022). The role of single-cell
profiling and deep immunophenotyping in understanding immune therapy
cardiotoxicity. Cardio Oncology, 4(5), 629–634.
https://doi.org/10.1016/j.jaccao.2022.08.012</unstructured_citation>
</citation>
<citation key="hao2023dictionary">
<article_title>Dictionary learning for integrative,
multimodal and scalable single-cell analysis</article_title>
<author>Hao</author>
<journal_title>Nature biotechnology</journal_title>
<doi>10.1038/s41587-023-01767-y</doi>
<cYear>2023</cYear>
<unstructured_citation>Hao, Y., Stuart, T., Kowalski, M. H.,
Choudhary, S., Hoffman, P., Hartman, A., Srivastava, A., Molla, G.,
Madad, S., Fernandez-Granda, C., &amp; others. (2023). Dictionary
learning for integrative, multimodal and scalable single-cell analysis.
Nature Biotechnology, 1–12.
https://doi.org/10.1038/s41587-023-01767-y</unstructured_citation>
</citation>
<citation key="ma2021single">
<article_title>Single-cell analysis pinpoints distinct
populations of cytotoxic CD4+ t cells and an IL-10+ CD109+ TH2 cell
population in nasal polyps</article_title>
<author>Ma</author>
<journal_title>Science Immunology</journal_title>
<issue>62</issue>
<volume>6</volume>
<doi>10.1126/sciimmunol.abg6356</doi>
<cYear>2021</cYear>
<unstructured_citation>Ma, J., Tibbitt, C. A., Georén, S.
K., Christian, M., Murrell, B., Cardell, L.-O., Bachert, C., &amp;
Coquet, J. M. (2021). Single-cell analysis pinpoints distinct
populations of cytotoxic CD4+ t cells and an IL-10+ CD109+ TH2 cell
population in nasal polyps. Science Immunology, 6(62), eabg6356.
https://doi.org/10.1126/sciimmunol.abg6356</unstructured_citation>
</citation>
<citation key="stark2022recombinant">
<article_title>Recombinant multimeric dog allergen prevents
airway hyperresponsiveness in a model of asthma marked by vigorous TH2
and TH17 cell responses</article_title>
<author>Stark</author>
<journal_title>Allergy</journal_title>
<issue>10</issue>
<volume>77</volume>
<doi>10.1111/all.15399</doi>
<cYear>2022</cYear>
<unstructured_citation>Stark, J. M., Liu, J., Tibbitt, C.
A., Christian, M., Ma, J., Wintersand, A., Dunst, J., Kreslavsky, T.,
Murrell, B., Adner, M., &amp; others. (2022). Recombinant multimeric dog
allergen prevents airway hyperresponsiveness in a model of asthma marked
by vigorous TH2 and TH17 cell responses. Allergy, 77(10), 2987–3001.
https://doi.org/10.1111/all.15399</unstructured_citation>
</citation>
<citation key="den2014activation">
<article_title>The activation of the adaptive immune system:
Cross-talk between antigen-presenting cells, t cells and b
cells</article_title>
<author>Haan</author>
<journal_title>Immunology letters</journal_title>
<issue>2</issue>
<volume>162</volume>
<doi>10.3389/fimmu.2019.00360</doi>
<cYear>2014</cYear>
<unstructured_citation>Haan, J. M. den, Arens, R., &amp;
Zelm, M. C. van. (2014). The activation of the adaptive immune system:
Cross-talk between antigen-presenting cells, t cells and b cells.
Immunology Letters, 162(2), 103–112.
https://doi.org/10.3389/fimmu.2019.00360</unstructured_citation>
</citation>
<citation key="sturm2020scirpy">
<article_title>Scirpy: A scanpy extension for analyzing
single-cell t-cell receptor-sequencing data</article_title>
<author>Sturm</author>
<journal_title>Bioinformatics</journal_title>
<issue>18</issue>
<volume>36</volume>
<doi>10.37473/dac/10.1101/2020.04.10.035865</doi>
<cYear>2020</cYear>
<unstructured_citation>Sturm, G., Szabo, T., Fotakis, G.,
Haider, M., Rieder, D., Trajanoski, Z., &amp; Finotello, F. (2020).
Scirpy: A scanpy extension for analyzing single-cell t-cell
receptor-sequencing data. Bioinformatics, 36(18), 4817–4818.
https://doi.org/10.37473/dac/10.1101/2020.04.10.035865</unstructured_citation>
</citation>
<citation key="andrews2021tutorial">
<article_title>Tutorial: Guidelines for the computational
analysis of single-cell RNA sequencing data</article_title>
<author>Andrews</author>
<journal_title>Nature protocols</journal_title>
<issue>1</issue>
<volume>16</volume>
<doi>10.1038/s41596-020-00409-w</doi>
<cYear>2021</cYear>
<unstructured_citation>Andrews, T. S., Kiselev, V. Y.,
McCarthy, D., &amp; Hemberg, M. (2021). Tutorial: Guidelines for the
computational analysis of single-cell RNA sequencing data. Nature
Protocols, 16(1), 1–9.
https://doi.org/10.1038/s41596-020-00409-w</unstructured_citation>
</citation>
<citation key="borcherding2020screpertoire">
<article_title>scRepertoire: An r-based toolkit for
single-cell immune receptor analysi [version 2; peer review: 2
approved].</article_title>
<author>Borcherding</author>
<doi>10.12688/f1000research.22139.2</doi>
<cYear>2020</cYear>
<unstructured_citation>Borcherding, N., &amp; Bormann, N. L.
(2020). scRepertoire: An r-based toolkit for single-cell immune receptor
analysi [version 2; peer review: 2 approved].
https://doi.org/10.12688/f1000research.22139.2</unstructured_citation>
</citation>
<citation key="adams2020clonal">
<article_title>Clonal expansion of innate and adaptive
lymphocytes</article_title>
<author>Adams</author>
<journal_title>Nature Reviews Immunology</journal_title>
<issue>11</issue>
<volume>20</volume>
<doi>10.1038/s41577-020-0307-4</doi>
<cYear>2020</cYear>
<unstructured_citation>Adams, N. M., Grassmann, S., &amp;
Sun, J. C. (2020). Clonal expansion of innate and adaptive lymphocytes.
Nature Reviews Immunology, 20(11), 694–707.
https://doi.org/10.1038/s41577-020-0307-4</unstructured_citation>
</citation>
<citation key="r2023r">
<volume_title>R: A language and environment for statistical
computing</volume_title>
<author>R Core Team</author>
<cYear>2023</cYear>
<unstructured_citation>R Core Team. (2023). R: A language
and environment for statistical computing. R Foundation for Statistical
Computing. https://www.R-project.org/</unstructured_citation>
</citation>
<citation key="benzanson2017julia">
<article_title>Julia: A fresh approach to numerical
computing</article_title>
<author>Bezanson</author>
<journal_title>SIAM Review</journal_title>
<issue>1</issue>
<volume>59</volume>
<doi>10.1137/141000671</doi>
<cYear>2017</cYear>
<unstructured_citation>Bezanson, J., Edelman, A., Karpinski,
S., &amp; Shah, V. B. (2017). Julia: A fresh approach to numerical
computing. SIAM Review, 59(1), 65–98.
https://doi.org/10.1137/141000671</unstructured_citation>
</citation>
<citation key="wang2021single">
<article_title>Single-cell transcriptome and TCR profiling
reveal activated and expanded t cell populations in parkinson’s
disease</article_title>
<author>Wang</author>
<journal_title>Cell Discovery</journal_title>
<issue>1</issue>
<volume>7</volume>
<doi>10.1038/s41421-021-00280-3</doi>
<cYear>2021</cYear>
<unstructured_citation>Wang, P., Yao, L., Luo, M., Zhou, W.,
Jin, X., Xu, Z., Yan, S., Li, Y., Xu, C., Cheng, R., &amp; others.
(2021). Single-cell transcriptome and TCR profiling reveal activated and
expanded t cell populations in parkinson’s disease. Cell Discovery,
7(1), 52.
https://doi.org/10.1038/s41421-021-00280-3</unstructured_citation>
</citation>
<citation key="andreatta2023tcell">
<article_title>T cell clonal analysis using single-cell RNA
sequencing and reference maps</article_title>
<author>Andreatta</author>
<journal_title>Bio-protocol</journal_title>
<doi>10.21769/BioProtoc.4735</doi>
<cYear>2023</cYear>
<unstructured_citation>Andreatta, M., Gueguen, P.,
Borcherding, N., &amp; Carmona, S. J. (2023). T cell clonal analysis
using single-cell RNA sequencing and reference maps. Bio-Protocol.
https://doi.org/10.21769/BioProtoc.4735</unstructured_citation>
</citation>
<citation key="borcherding2021mapping">
<article_title>Mapping the immune environment in clear cell
renal carcinoma by single-cell genomics</article_title>
<author>Borcherding</author>
<journal_title>Communications biology</journal_title>
<issue>1</issue>
<volume>4</volume>
<doi>10.1038/s42003-020-01625-6</doi>
<cYear>2021</cYear>
<unstructured_citation>Borcherding, N., Vishwakarma, A.,
Voigt, A. P., Bellizzi, A., Kaplan, J., Nepple, K., Salem, A. K.,
Jenkins, R. W., Zakharia, Y., &amp; Zhang, W. (2021). Mapping the immune
environment in clear cell renal carcinoma by single-cell genomics.
Communications Biology, 4(1), 122.
https://doi.org/10.1038/s42003-020-01625-6</unstructured_citation>
</citation>
<citation key="eddelbuettel2011rcpp">
<article_title>Rcpp: Seamless R and C++
integration</article_title>
<author>Eddelbuettel</author>
<journal_title>Journal of Statistical
Software</journal_title>
<issue>8</issue>
<volume>40</volume>
<doi>10.18637/jss.v040.i08</doi>
<cYear>2011</cYear>
<unstructured_citation>Eddelbuettel, D., &amp; François, R.
(2011). Rcpp: Seamless R and C++ integration. Journal of Statistical
Software, 40(8), 1–18.
https://doi.org/10.18637/jss.v040.i08</unstructured_citation>
</citation>
<citation key="wickham2016ggplot2">
<volume_title>ggplot2: Elegant graphics for data
analysis</volume_title>
<author>Wickham</author>
<isbn>978-3-319-24277-4</isbn>
<cYear>2016</cYear>
<unstructured_citation>Wickham, H. (2016). ggplot2: Elegant
graphics for data analysis. Springer-Verlag New York.
ISBN: 978-3-319-24277-4</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06868/10.21105.joss.06868.pdf
Binary file not shown.
Loading

0 comments on commit 6f530cc

Please sign in to comment.