Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.06868 #6155

Merged
merged 4 commits into from
Nov 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
323 changes: 323 additions & 0 deletions joss.06868/10.21105.joss.06868.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,323 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241118162052-e1aeb4b73de75d903c7c7759f30abaa404ed347c</doi_batch_id>
<timestamp>20241118162052</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>admin@theoj.org</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>11</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>103</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>APackOfTheClones: Visualization of clonal expansion
with circle packing</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Qile</given_name>
<surname>Yang</surname>
<affiliations>
<institution><institution_name>University of California, Berkeley, Berkeley, CA 94720, United States of America</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0009-0005-0148-2499</ORCID>
</person_name>
</contributors>
<publication_date>
<month>11</month>
<day>18</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6868</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06868</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.13916956</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6868</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06868</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06868</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06868.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="huang2022role">
<article_title>The role of single-cell profiling and deep
immunophenotyping in understanding immune therapy
cardiotoxicity</article_title>
<author>Huang</author>
<journal_title>Cardio Oncology</journal_title>
<issue>5</issue>
<volume>4</volume>
<doi>10.1016/j.jaccao.2022.08.012</doi>
<cYear>2022</cYear>
<unstructured_citation>Huang, Y. V., Waliany, S., Lee, D.,
Galdos, F. X., Witteles, R. M., Neal, J. W., Fan, A. C., Maecker, H. T.,
Nguyen, P. K., Wu, S. M., &amp; others. (2022). The role of single-cell
profiling and deep immunophenotyping in understanding immune therapy
cardiotoxicity. Cardio Oncology, 4(5), 629–634.
https://doi.org/10.1016/j.jaccao.2022.08.012</unstructured_citation>
</citation>
<citation key="hao2023dictionary">
<article_title>Dictionary learning for integrative,
multimodal and scalable single-cell analysis</article_title>
<author>Hao</author>
<journal_title>Nature biotechnology</journal_title>
<doi>10.1038/s41587-023-01767-y</doi>
<cYear>2023</cYear>
<unstructured_citation>Hao, Y., Stuart, T., Kowalski, M. H.,
Choudhary, S., Hoffman, P., Hartman, A., Srivastava, A., Molla, G.,
Madad, S., Fernandez-Granda, C., &amp; others. (2023). Dictionary
learning for integrative, multimodal and scalable single-cell analysis.
Nature Biotechnology, 1–12.
https://doi.org/10.1038/s41587-023-01767-y</unstructured_citation>
</citation>
<citation key="ma2021single">
<article_title>Single-cell analysis pinpoints distinct
populations of cytotoxic CD4+ t cells and an IL-10+ CD109+ TH2 cell
population in nasal polyps</article_title>
<author>Ma</author>
<journal_title>Science Immunology</journal_title>
<issue>62</issue>
<volume>6</volume>
<doi>10.1126/sciimmunol.abg6356</doi>
<cYear>2021</cYear>
<unstructured_citation>Ma, J., Tibbitt, C. A., Georén, S.
K., Christian, M., Murrell, B., Cardell, L.-O., Bachert, C., &amp;
Coquet, J. M. (2021). Single-cell analysis pinpoints distinct
populations of cytotoxic CD4+ t cells and an IL-10+ CD109+ TH2 cell
population in nasal polyps. Science Immunology, 6(62), eabg6356.
https://doi.org/10.1126/sciimmunol.abg6356</unstructured_citation>
</citation>
<citation key="stark2022recombinant">
<article_title>Recombinant multimeric dog allergen prevents
airway hyperresponsiveness in a model of asthma marked by vigorous TH2
and TH17 cell responses</article_title>
<author>Stark</author>
<journal_title>Allergy</journal_title>
<issue>10</issue>
<volume>77</volume>
<doi>10.1111/all.15399</doi>
<cYear>2022</cYear>
<unstructured_citation>Stark, J. M., Liu, J., Tibbitt, C.
A., Christian, M., Ma, J., Wintersand, A., Dunst, J., Kreslavsky, T.,
Murrell, B., Adner, M., &amp; others. (2022). Recombinant multimeric dog
allergen prevents airway hyperresponsiveness in a model of asthma marked
by vigorous TH2 and TH17 cell responses. Allergy, 77(10), 2987–3001.
https://doi.org/10.1111/all.15399</unstructured_citation>
</citation>
<citation key="den2014activation">
<article_title>The activation of the adaptive immune system:
Cross-talk between antigen-presenting cells, t cells and b
cells</article_title>
<author>Haan</author>
<journal_title>Immunology letters</journal_title>
<issue>2</issue>
<volume>162</volume>
<doi>10.3389/fimmu.2019.00360</doi>
<cYear>2014</cYear>
<unstructured_citation>Haan, J. M. den, Arens, R., &amp;
Zelm, M. C. van. (2014). The activation of the adaptive immune system:
Cross-talk between antigen-presenting cells, t cells and b cells.
Immunology Letters, 162(2), 103–112.
https://doi.org/10.3389/fimmu.2019.00360</unstructured_citation>
</citation>
<citation key="sturm2020scirpy">
<article_title>Scirpy: A scanpy extension for analyzing
single-cell t-cell receptor-sequencing data</article_title>
<author>Sturm</author>
<journal_title>Bioinformatics</journal_title>
<issue>18</issue>
<volume>36</volume>
<doi>10.37473/dac/10.1101/2020.04.10.035865</doi>
<cYear>2020</cYear>
<unstructured_citation>Sturm, G., Szabo, T., Fotakis, G.,
Haider, M., Rieder, D., Trajanoski, Z., &amp; Finotello, F. (2020).
Scirpy: A scanpy extension for analyzing single-cell t-cell
receptor-sequencing data. Bioinformatics, 36(18), 4817–4818.
https://doi.org/10.37473/dac/10.1101/2020.04.10.035865</unstructured_citation>
</citation>
<citation key="andrews2021tutorial">
<article_title>Tutorial: Guidelines for the computational
analysis of single-cell RNA sequencing data</article_title>
<author>Andrews</author>
<journal_title>Nature protocols</journal_title>
<issue>1</issue>
<volume>16</volume>
<doi>10.1038/s41596-020-00409-w</doi>
<cYear>2021</cYear>
<unstructured_citation>Andrews, T. S., Kiselev, V. Y.,
McCarthy, D., &amp; Hemberg, M. (2021). Tutorial: Guidelines for the
computational analysis of single-cell RNA sequencing data. Nature
Protocols, 16(1), 1–9.
https://doi.org/10.1038/s41596-020-00409-w</unstructured_citation>
</citation>
<citation key="borcherding2020screpertoire">
<article_title>scRepertoire: An r-based toolkit for
single-cell immune receptor analysi [version 2; peer review: 2
approved].</article_title>
<author>Borcherding</author>
<doi>10.12688/f1000research.22139.2</doi>
<cYear>2020</cYear>
<unstructured_citation>Borcherding, N., &amp; Bormann, N. L.
(2020). scRepertoire: An r-based toolkit for single-cell immune receptor
analysi [version 2; peer review: 2 approved].
https://doi.org/10.12688/f1000research.22139.2</unstructured_citation>
</citation>
<citation key="adams2020clonal">
<article_title>Clonal expansion of innate and adaptive
lymphocytes</article_title>
<author>Adams</author>
<journal_title>Nature Reviews Immunology</journal_title>
<issue>11</issue>
<volume>20</volume>
<doi>10.1038/s41577-020-0307-4</doi>
<cYear>2020</cYear>
<unstructured_citation>Adams, N. M., Grassmann, S., &amp;
Sun, J. C. (2020). Clonal expansion of innate and adaptive lymphocytes.
Nature Reviews Immunology, 20(11), 694–707.
https://doi.org/10.1038/s41577-020-0307-4</unstructured_citation>
</citation>
<citation key="r2023r">
<volume_title>R: A language and environment for statistical
computing</volume_title>
<author>R Core Team</author>
<cYear>2023</cYear>
<unstructured_citation>R Core Team. (2023). R: A language
and environment for statistical computing. R Foundation for Statistical
Computing. https://www.R-project.org/</unstructured_citation>
</citation>
<citation key="benzanson2017julia">
<article_title>Julia: A fresh approach to numerical
computing</article_title>
<author>Bezanson</author>
<journal_title>SIAM Review</journal_title>
<issue>1</issue>
<volume>59</volume>
<doi>10.1137/141000671</doi>
<cYear>2017</cYear>
<unstructured_citation>Bezanson, J., Edelman, A., Karpinski,
S., &amp; Shah, V. B. (2017). Julia: A fresh approach to numerical
computing. SIAM Review, 59(1), 65–98.
https://doi.org/10.1137/141000671</unstructured_citation>
</citation>
<citation key="wang2021single">
<article_title>Single-cell transcriptome and TCR profiling
reveal activated and expanded t cell populations in parkinson’s
disease</article_title>
<author>Wang</author>
<journal_title>Cell Discovery</journal_title>
<issue>1</issue>
<volume>7</volume>
<doi>10.1038/s41421-021-00280-3</doi>
<cYear>2021</cYear>
<unstructured_citation>Wang, P., Yao, L., Luo, M., Zhou, W.,
Jin, X., Xu, Z., Yan, S., Li, Y., Xu, C., Cheng, R., &amp; others.
(2021). Single-cell transcriptome and TCR profiling reveal activated and
expanded t cell populations in parkinson’s disease. Cell Discovery,
7(1), 52.
https://doi.org/10.1038/s41421-021-00280-3</unstructured_citation>
</citation>
<citation key="andreatta2023tcell">
<article_title>T cell clonal analysis using single-cell RNA
sequencing and reference maps</article_title>
<author>Andreatta</author>
<journal_title>Bio-protocol</journal_title>
<doi>10.21769/BioProtoc.4735</doi>
<cYear>2023</cYear>
<unstructured_citation>Andreatta, M., Gueguen, P.,
Borcherding, N., &amp; Carmona, S. J. (2023). T cell clonal analysis
using single-cell RNA sequencing and reference maps. Bio-Protocol.
https://doi.org/10.21769/BioProtoc.4735</unstructured_citation>
</citation>
<citation key="borcherding2021mapping">
<article_title>Mapping the immune environment in clear cell
renal carcinoma by single-cell genomics</article_title>
<author>Borcherding</author>
<journal_title>Communications biology</journal_title>
<issue>1</issue>
<volume>4</volume>
<doi>10.1038/s42003-020-01625-6</doi>
<cYear>2021</cYear>
<unstructured_citation>Borcherding, N., Vishwakarma, A.,
Voigt, A. P., Bellizzi, A., Kaplan, J., Nepple, K., Salem, A. K.,
Jenkins, R. W., Zakharia, Y., &amp; Zhang, W. (2021). Mapping the immune
environment in clear cell renal carcinoma by single-cell genomics.
Communications Biology, 4(1), 122.
https://doi.org/10.1038/s42003-020-01625-6</unstructured_citation>
</citation>
<citation key="eddelbuettel2011rcpp">
<article_title>Rcpp: Seamless R and C++
integration</article_title>
<author>Eddelbuettel</author>
<journal_title>Journal of Statistical
Software</journal_title>
<issue>8</issue>
<volume>40</volume>
<doi>10.18637/jss.v040.i08</doi>
<cYear>2011</cYear>
<unstructured_citation>Eddelbuettel, D., &amp; François, R.
(2011). Rcpp: Seamless R and C++ integration. Journal of Statistical
Software, 40(8), 1–18.
https://doi.org/10.18637/jss.v040.i08</unstructured_citation>
</citation>
<citation key="wickham2016ggplot2">
<volume_title>ggplot2: Elegant graphics for data
analysis</volume_title>
<author>Wickham</author>
<isbn>978-3-319-24277-4</isbn>
<cYear>2016</cYear>
<unstructured_citation>Wickham, H. (2016). ggplot2: Elegant
graphics for data analysis. Springer-Verlag New York.
ISBN: 978-3-319-24277-4</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06868/10.21105.joss.06868.pdf
Binary file not shown.
Loading