Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TF FE]: Support complex tensors for ScatterNd operation #26821

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 22 additions & 1 deletion src/frontends/tensorflow_common/src/op/scatter_nd.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,9 @@
//

#include "common_op_table.hpp"
#include "helper_ops/complex_type_mark.hpp"
#include "openvino/op/broadcast.hpp"
#include "openvino/op/concat.hpp"
#include "openvino/op/scatter_nd_update.hpp"
#include "utils.hpp"

Expand All @@ -15,10 +17,29 @@ namespace frontend {
namespace tensorflow {
namespace op {
OutputVector translate_scatter_nd_op(const NodeContext& node) {
default_op_checks(node, 3, {"ScatterNd", "SCATTER_ND"});
default_op_checks(node, 3, {"ScatterNd", "SCATTER_ND"}, true);
auto input_indices = node.get_input(0);
auto updates = node.get_input(1);
auto shape = node.get_input(2);
auto complex_type_mark = as_type_ptr<ComplexTypeMark>(updates.get_node_shared_ptr());

if (complex_type_mark) {
element::Type complex_part_type = complex_type_mark->get_complex_part_type();
updates = complex_type_mark->input_value(0);

auto new_dim = create_same_type_const<int32_t>(shape, vector<int32_t>{2}, Shape{1});
auto new_shape = make_shared<v0::Concat>(OutputVector{shape, new_dim}, -1);

auto const_zero = create_same_type_const<int32_t>(updates, vector<int32_t>{0}, Shape{1});
auto broadcast = make_shared<v3::Broadcast>(const_zero, new_shape);

auto complex_scatter_nd = make_shared<v3::ScatterNDUpdate>(broadcast, input_indices, updates);

set_node_name(node.get_name(), complex_scatter_nd);
auto complex_result = make_shared<ComplexTypeMark>(complex_scatter_nd, complex_part_type);

return {complex_result};
}

auto input_data = create_same_type_const<int32_t>(updates, vector<int32_t>{0}, Shape{1});
auto broadcast = make_shared<v3::Broadcast>(input_data, shape);
Expand Down
53 changes: 53 additions & 0 deletions tests/layer_tests/tensorflow_tests/test_tf_ScatterND.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,11 @@

import platform

import numpy as np
import pytest
from common.tf_layer_test_class import CommonTFLayerTest

rng = np.random.default_rng(475912)

class TestTFScatterND(CommonTFLayerTest):
def create_tf_scatternd_placeholder_const_net(self, x_shape, indices, updates, ir_version,
Expand Down Expand Up @@ -73,3 +75,54 @@ def test_tf_scatter_nd(self, params, ie_device, precision, ir_version, temp_dir,
use_legacy_frontend=use_legacy_frontend),
ie_device, precision, temp_dir=temp_dir, ir_version=ir_version,
use_legacy_frontend=use_legacy_frontend, **params)

class TestTFScatterNDComplex(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'param_real:0' in inputs_info, "Test error: inputs_info must contain `param_real`"
assert 'param_imag:0' in inputs_info, "Test error: inputs_info must contain `param_imag`"
updates_shape = inputs_info['param_real:0']
inputs_data = {}
inputs_data['param_real:0'] = rng.integers(-10, 10, updates_shape).astype(np.float32)
inputs_data['param_imag:0'] = rng.integers(-10, 10, updates_shape).astype(np.float32)

return inputs_data

def create_tf_scatternd_complex_placeholder_const_net(self, x_shape, indices, updates_shape, indices_type,
ir_version, use_legacy_frontend):
import tensorflow as tf
tf.compat.v1.reset_default_graph()
with tf.compat.v1.Session() as sess:
param_real = tf.compat.v1.placeholder(tf.float32, updates_shape, 'param_real')
param_imag = tf.compat.v1.placeholder(tf.float32, updates_shape, 'param_imag')

tf_indices = tf.constant(indices, dtype=indices_type)
tf_shape = tf.constant(x_shape, dtype=indices_type)

complex = tf.raw_ops.Complex(real=param_real, imag=param_imag)

result = tf.scatter_nd(indices=tf_indices, updates=complex, shape=tf_shape, name="Operation")
tf.raw_ops.Real(input=result)
tf.raw_ops.Imag(input=result)

tf.compat.v1.global_variables_initializer()

tf_net = sess.graph_def

return tf_net, None

test_data = [
dict(x_shape=[8], indices=[[4], [3], [1], [7]], updates_shape=[4], indices_type=np.int32),
dict(x_shape=[10], indices=[[0], [2], [4], [6], [8]], updates_shape=[5], indices_type=np.int64),
dict(x_shape=[5, 5], indices=[[0, 0], [1, 1], [2, 2], [3, 3]], updates_shape=[4], indices_type=np.int64),
dict(x_shape=[3, 3, 3], indices=[[0, 0, 0], [1, 1, 1], [2, 2, 2]], updates_shape=[3], indices_type=np.int32),
]

rkazants marked this conversation as resolved.
Show resolved Hide resolved
@pytest.mark.parametrize("params", test_data)
@pytest.mark.nightly
@pytest.mark.precommit
def test_tf_scatter_nd_complex(self, params, ie_device, precision, ir_version, temp_dir,
use_legacy_frontend):
self._test(*self.create_tf_scatternd_complex_placeholder_const_net(**params, ir_version=ir_version,
use_legacy_frontend=use_legacy_frontend),
ie_device, precision, temp_dir=temp_dir, ir_version=ir_version,
use_legacy_frontend=use_legacy_frontend, **params)
Loading