Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

📊 population: exploration (shared externally) #3502

Draft
wants to merge 12 commits into
base: master
Choose a base branch
from

Conversation

lucasrodes
Copy link
Member

@lucasrodes lucasrodes commented Nov 6, 2024

This PR was created to explore a new population time series.

The PR is left open so that some external actors can see our analysis

Internal link: link

@owidbot
Copy link
Contributor

owidbot commented Nov 6, 2024

Quick links (staging server):

Site Dev Site Preview Admin Wizard Docs

Login: ssh owid@staging-site-pexp-public

chart-diff: ❌
  • 0/1 reviewed charts
  • Modified: 0/0
  • New: 0/1
  • Rejected: 0
data-diff: ❌ Found differences
= Dataset garden/antibiotics/2024-10-09/gram
  = Table gram
    ~ Dim country
-       - Removed values: 114 / 3876 (2.94%)
           year country
           2007  Africa
           2010  Africa
           2005    Asia
           2014    Asia
           2014 Oceania
    ~ Dim year
-       - Removed values: 114 / 3876 (2.94%)
          country  year
           Africa  2007
           Africa  2010
             Asia  2005
             Asia  2014
          Oceania  2014
    ~ Column antibiotic_consumption__ddd_1_000_day (changed metadata, changed data)
-       - description: Population by country and year.
-       - description_short: Estimated [Defined Daily Doses](#dod:defined-daily-doses) per 1,000 people per day.
        ?                              ---------------------------       ^     ^
+       + description_short: Estimated defined daily doses (DDD) per 1,000 people per day.
        ?                                     ^     ^     +++++
-       -   - producer: Browne AJ et al. (2021)
        ?                               -------
+       +   - producer: Browne AJ et al.
+       +     description: |-
+       +       The Global Research on Antimicrobial Resistance (GRAM) Project is a partnership between the University of Oxford and the Institute for Health Metrics and Evaluation (IHME) at the University of Washington, to provide rigorous quantitative estimates of antimicrobial resistance (AMR) burden; to increase global-, regional-, and country-level awareness of AMR; to boost surveillance efforts, particularly in low and middle income countries (LMICs); and, to promote the rational use of antimicrobials worldwide.
+       +     title_snapshot: Antibiotic usage and consumption
+       +     description_snapshot: |-
+       +       For modeled estimates of total antibiotic consumption: IQVIA MIDASTM database, [European Center for Disease Control](https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/esac-net), World Health Organization, and published literature.
-       - licenses:
        ?        -
+       +     license:
        ? ++++
-       -   - name: Creative Commons BY 4.0
-       -     url: https://docs.google.com/document/d/1-RmthhS2EPMK_HIpnPctcXpB0n7ADSWnXa5Hb3PxNq4/edit?usp=sharing
+       +       name: © 2024 Global Research on Antimicrobial Resistance
+       +       url: https://www.ox.ac.uk/legal
-       - short_unit: ''
-       - processing_level: major
-       -   attribution: HYDE (2023); Gapminder (2022); UN WPP (2024)

-       - Removed values: 114 / 3876 (2.94%)
          country  year  antibiotic_consumption__ddd_1_000_day
           Africa  2007                               8.395011
           Africa  2010                               9.500336
             Asia  2005                               9.062757
             Asia  2014                              12.298692
          Oceania  2014                              20.982134
    ~ Column lower_uncertainty_interval (changed metadata, changed data)
-       - description: Population by country and year.
-       - description_short: Population by country, available from 10,000 BCE to 2100, based on data and estimates from different sources.
-       -   - producer: Browne AJ et al. (2021)
        ?                               -------
+       +   - producer: Browne AJ et al.
+       +     description: |-
+       +       The Global Research on Antimicrobial Resistance (GRAM) Project is a partnership between the University of Oxford and the Institute for Health Metrics and Evaluation (IHME) at the University of Washington, to provide rigorous quantitative estimates of antimicrobial resistance (AMR) burden; to increase global-, regional-, and country-level awareness of AMR; to boost surveillance efforts, particularly in low and middle income countries (LMICs); and, to promote the rational use of antimicrobials worldwide.
+       +     title_snapshot: Antibiotic usage and consumption
+       +     description_snapshot: |-
+       +       For modeled estimates of total antibiotic consumption: IQVIA MIDASTM database, [European Center for Disease Control](https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/esac-net), World Health Organization, and published literature.
-       - licenses:
        ?        -
+       +     license:
        ? ++++
-       -   - name: Creative Commons BY 4.0
-       -     url: https://docs.google.com/document/d/1-RmthhS2EPMK_HIpnPctcXpB0n7ADSWnXa5Hb3PxNq4/edit?usp=sharing
+       +       name: © 2024 Global Research on Antimicrobial Resistance
+       +       url: https://www.ox.ac.uk/legal
-       - short_unit: ''
-       - display:
-       -   numDecimalPlaces: 0
-       - processing_level: major
-       -   attribution: HYDE (2023); Gapminder (2022); UN WPP (2024)

-       - Removed values: 114 / 3876 (2.94%)
          country  year  lower_uncertainty_interval
           Africa  2007                    6.762672
           Africa  2010                    7.718959
             Asia  2005                    8.511994
             Asia  2014                    11.61167
          Oceania  2014                   20.256237
    ~ Column upper_uncertainty_interval (changed metadata, changed data)
-       - description: Population by country and year.
-       - description_short: Population by country, available from 10,000 BCE to 2100, based on data and estimates from different sources.
-       -   - producer: Browne AJ et al. (2021)
        ?                               -------
+       +   - producer: Browne AJ et al.
+       +     description: |-
+       +       The Global Research on Antimicrobial Resistance (GRAM) Project is a partnership between the University of Oxford and the Institute for Health Metrics and Evaluation (IHME) at the University of Washington, to provide rigorous quantitative estimates of antimicrobial resistance (AMR) burden; to increase global-, regional-, and country-level awareness of AMR; to boost surveillance efforts, particularly in low and middle income countries (LMICs); and, to promote the rational use of antimicrobials worldwide.
+       +     title_snapshot: Antibiotic usage and consumption
+       +     description_snapshot: |-
+       +       For modeled estimates of total antibiotic consumption: IQVIA MIDASTM database, [European Center for Disease Control](https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/esac-net), World Health Organization, and published literature.
-       - licenses:
        ?        -
+       +     license:
        ? ++++
-       -   - name: Creative Commons BY 4.0
-       -     url: https://docs.google.com/document/d/1-RmthhS2EPMK_HIpnPctcXpB0n7ADSWnXa5Hb3PxNq4/edit?usp=sharing
+       +       name: © 2024 Global Research on Antimicrobial Resistance
+       +       url: https://www.ox.ac.uk/legal
-       - short_unit: ''
-       - display:
-       -   numDecimalPlaces: 0
-       - processing_level: major
-       -   attribution: HYDE (2023); Gapminder (2022); UN WPP (2024)

-       - Removed values: 114 / 3876 (2.94%)
          country  year  upper_uncertainty_interval
           Africa  2007                   10.357027
           Africa  2010                   11.702678
             Asia  2005                    9.724019
             Asia  2014                   13.079142
          Oceania  2014                   21.882711
= Dataset garden/antibiotics/2024-10-09/gram_level
  = Table gram_level
    ~ Dim country
-       - Removed values: 912 / 31160 (2.93%)
           year                  atc_level_3_class country
           2018                 J01A-Tetracyclines  Africa
           2018                   J01B-Amphenicols  Africa
           2012 J01E-Sulfonamides and trimethoprim    Asia
           2010               J01G-Aminoglycosides Oceania
           2017            J01D-Other beta-lactams Oceania
    ~ Dim year
-       - Removed values: 912 / 31160 (2.93%)
          country                  atc_level_3_class  year
           Africa                 J01A-Tetracyclines  2018
           Africa                   J01B-Amphenicols  2018
             Asia J01E-Sulfonamides and trimethoprim  2012
          Oceania               J01G-Aminoglycosides  2010
          Oceania            J01D-Other beta-lactams  2017
    ~ Dim atc_level_3_class
-       - Removed values: 912 / 31160 (2.93%)
          country  year                  atc_level_3_class
           Africa  2018                 J01A-Tetracyclines
           Africa  2018                   J01B-Amphenicols
             Asia  2012 J01E-Sulfonamides and trimethoprim
          Oceania  2010               J01G-Aminoglycosides
          Oceania  2017            J01D-Other beta-lactams
    ~ Column antibiotic_consumption__ddd_1_000_day (changed metadata, changed data)
-       - description: Population by country and year.
-       - description_short: Estimated [Defined Daily Doses](#dod:defined-daily-doses) of << atc_level_3_class >> per 1,000 people.
        ?                              ---------------------------       ^     ^
+       + description_short: Estimated defined daily doses (DDD) of << atc_level_3_class >> per 1,000 people.
        ?                                     ^     ^     +++++
-       -   - producer: Browne AJ et al. (2021)
        ?                               -------
+       +   - producer: Browne AJ et al.
+       +     description: |-
+       +       The Global Research on Antimicrobial Resistance (GRAM) Project is a partnership between the University of Oxford and the Institute for Health Metrics and Evaluation (IHME) at the University of Washington, to provide rigorous quantitative estimates of antimicrobial resistance (AMR) burden; to increase global-, regional-, and country-level awareness of AMR; to boost surveillance efforts, particularly in low and middle income countries (LMICs); and, to promote the rational use of antimicrobials worldwide.
+       +     title_snapshot: Antibiotic usage and consumption
+       +     description_snapshot: |-
+       +       For modeled estimates of total antibiotic consumption: IQVIA MIDASTM database, [European Center for Disease Control](https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/esac-net), World Health Organization, and published literature.
-       - licenses:
        ?        -
+       +     license:
        ? ++++
-       -   - name: Creative Commons BY 4.0
-       -     url: https://docs.google.com/document/d/1-RmthhS2EPMK_HIpnPctcXpB0n7ADSWnXa5Hb3PxNq4/edit?usp=sharing
+       +       name: © 2024 Global Research on Antimicrobial Resistance
+       +       url: https://www.ox.ac.uk/legal
-       - short_unit: ''
-       - processing_level: major
-       -   attribution: HYDE (2023); Gapminder (2022); UN WPP (2024)

-       - Removed values: 912 / 31160 (2.93%)
          country  year                  atc_level_3_class  antibiotic_consumption__ddd_1_000_day
           Africa  2018                 J01A-Tetracyclines                               1.393283
           Africa  2018                   J01B-Amphenicols                               0.039202
             Asia  2012 J01E-Sulfonamides and trimethoprim                               0.705565
          Oceania  2010               J01G-Aminoglycosides                               0.117554
          Oceania  2017            J01D-Other beta-lactams                               3.285561
= Dataset garden/antibiotics/2024-10-25/esvac_sales_corrected
  = Table esvac_sales_corrected
⚠ Error: Index must be unique.
= Dataset garden/artificial_intelligence/2023-06-14/ai_deepfakes
  = Table ai_deepfakes
⚠ Error: Index must be unique.
⚠ Error: Index must be unique.
= Dataset garden/artificial_intelligence/2024-02-15/epoch_llms
  = Table epoch_llms
    ~ Column dataset_size__tokens (changed metadata)
-       -       Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epoch.ai. Retrieved from: 'https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks' .
        ?                                                                                                                                                                                          ^^^^                               ^^^
+       +       Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks' .
        ?                                                                                                                                                                                          ^^^^^^^                               ^^^^^^
-       -     url_main: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                            -
+       +     url_main: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                              ++++
-       -       url: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                         -
+       +       url: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                           ++++
    ~ Column mmlu_avg (changed metadata)
-       -       Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epoch.ai. Retrieved from: 'https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks' .
        ?                                                                                                                                                                                          ^^^^                               ^^^
+       +       Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks' .
        ?                                                                                                                                                                                          ^^^^^^^                               ^^^^^^
-       -     url_main: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                            -
+       +     url_main: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                              ++++
-       -       url: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                         -
+       +       url: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                           ++++
    ~ Column model_size__parameters (changed metadata)
-       -       Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epoch.ai. Retrieved from: 'https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks' .
        ?                                                                                                                                                                                          ^^^^                               ^^^
+       +       Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks' .
        ?                                                                                                                                                                                          ^^^^^^^                               ^^^^^^
-       -     url_main: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                            -
+       +     url_main: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                              ++++
-       -       url: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                         -
+       +       url: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                           ++++
    ~ Column organisation (changed metadata)
-       -       Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epoch.ai. Retrieved from: 'https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks' .
        ?                                                                                                                                                                                          ^^^^                               ^^^
+       +       Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks' .
        ?                                                                                                                                                                                          ^^^^^^^                               ^^^^^^
-       -     url_main: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                            -
+       +     url_main: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                              ++++
-       -       url: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                         -
+       +       url: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                           ++++
    ~ Column training_computation_petaflop (changed metadata)
-       -       Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epoch.ai. Retrieved from: 'https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks' .
        ?                                                                                                                                                                                          ^^^^                               ^^^
+       +       Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks' .
        ?                                                                                                                                                                                          ^^^^^^^                               ^^^^^^
-       -     url_main: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                            -
+       +     url_main: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                              ++++
-       -       url: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                         -
+       +       url: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks
        ?                           ++++
= Dataset garden/artificial_intelligence/2024-06-06/epoch_compute_cost
  = Table epoch_compute_cost
    ~ Column cost__inflation_adjusted (changed metadata)
-       -     url_main: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                            -
+       +     url_main: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                              ++++
    ~ Column domain (changed metadata)
-       -     url_main: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                            -
+       +     url_main: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                              ++++
    ~ Column publication_date (changed metadata)
-       -     url_main: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                            -
+       +     url_main: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                              ++++
= Dataset garden/artificial_intelligence/2024-11-03/epoch
  = Table epoch
    ~ Column domain (changed metadata)
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
    ~ Column organization_categorization (changed metadata)
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
    ~ Column parameters (changed metadata)
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
    ~ Column publication_date (changed metadata)
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
    ~ Column training_computation_petaflop (changed metadata)
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
    ~ Column training_dataset_size__datapoints (changed metadata)
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
= Dataset garden/artificial_intelligence/2024-11-03/epoch_aggregates_affiliation
  = Table epoch_aggregates_affiliation
    ~ Column cumulative_count (changed metadata)
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
    ~ Column yearly_count (changed metadata)
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
= Dataset garden/artificial_intelligence/2024-11-03/epoch_aggregates_domain
  = Table epoch_aggregates_domain
    ~ Column cumulative_count (changed metadata)
-       -   Describes the specific area, application, or field in which an AI system is designed to operate. An AI system can operate in more than one domain, thus contributing to the count for multiple domains. The 2024 data is incomplete and was last updated 03 November 2024.
        ?                                                                                                                                                                                                                                                            ^^
+       +   Describes the specific area, application, or field in which an AI system is designed to operate. An AI system can operate in more than one domain, thus contributing to the count for multiple domains. The 2024 data is incomplete and was last updated 6 November 2024.
        ?                                                                                                                                                                                                                                                            ^
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
    ~ Column yearly_count (changed metadata)
-       -   Describes the specific area, application, or field in which an AI system is designed to operate. An AI system can operate in more than one domain, thus contributing to the count for multiple domains. The 2024 data is incomplete and was last updated 03 November 2024.
        ?                                                                                                                                                                                                                                                            ^^
+       +   Describes the specific area, application, or field in which an AI system is designed to operate. An AI system can operate in more than one domain, thus contributing to the count for multiple domains. The 2024 data is incomplete and was last updated 6 November 2024.
        ?                                                                                                                                                                                                                                                            ^
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
= Dataset garden/artificial_intelligence/2024-11-03/epoch_compute_intensive
  = Table epoch_compute_intensive
    ~ Column domain (changed metadata)
-       -       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^
+       +       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^^^^
-       -     url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models
        ?                            -
+       +     url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv
        ?                                  ++++
-       -       url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                         -
+       +       url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                           ++++
    ~ Column parameters (changed metadata)
-       -       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^
+       +       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^^^^
-       -     url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models
        ?                            -
+       +     url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv
        ?                                  ++++
-       -       url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                         -
+       +       url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                           ++++
    ~ Column publication_date (changed metadata)
-       -       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^
+       +       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^^^^
-       -     url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models
        ?                            -
+       +     url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv
        ?                                  ++++
-       -       url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                         -
+       +       url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                           ++++
    ~ Column training_computation_petaflop (changed metadata)
-       -       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^
+       +       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^^^^
-       -     url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models
        ?                            -
+       +     url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv
        ?                                  ++++
-       -       url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                         -
+       +       url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                           ++++
    ~ Column training_dataset_size__datapoints (changed metadata)
-       -       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^
+       +       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^^^^
-       -     url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models
        ?                            -
+       +     url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv
        ?                                  ++++
-       -       url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                         -
+       +       url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                           ++++
= Dataset garden/artificial_intelligence/2024-11-03/epoch_compute_intensive_countries
  = Table epoch_compute_intensive_countries
    ~ Column cumulative_count (changed metadata)
-       -   Refers to the location of the primary organization with which the authors of a large-scale AI systems are affiliated. The 2024 data is incomplete and was last updated 03 November 2024.
        ?                                                                                                                                                                          ^^
+       +   Refers to the location of the primary organization with which the authors of a large-scale AI systems are affiliated. The 2024 data is incomplete and was last updated 6 November 2024.
        ?                                                                                                                                                                          ^
-       -       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^
+       +       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^^^^
-       -     url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models
        ?                            -
+       +     url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv
        ?                                  ++++
-       -       url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                         -
+       +       url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                           ++++
    ~ Column yearly_count (changed metadata)
-       -   Refers to the location of the primary organization with which the authors of a large-scale AI systems are affiliated. The 2024 data is incomplete and was last updated 03 November 2024.
        ?                                                                                                                                                                          ^^
+       +   Refers to the location of the primary organization with which the authors of a large-scale AI systems are affiliated. The 2024 data is incomplete and was last updated 6 November 2024.
        ?                                                                                                                                                                          ^
-       -       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^
+       +       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^^^^
-       -     url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models
        ?                            -
+       +     url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv
        ?                                  ++++
-       -       url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                         -
+       +       url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                           ++++
= Dataset garden/artificial_intelligence/2024-11-03/epoch_compute_intensive_domain
  = Table epoch_compute_intensive_domain
    ~ Column cumulative_count (changed metadata)
-       -   Describes the specific area, application, or field in which a large-scale AI model is designed to operate. The 2024 data is incomplete and was last updated 03 November 2024.
        ?                                                                                                                                                               ^^
+       +   Describes the specific area, application, or field in which a large-scale AI model is designed to operate. The 2024 data is incomplete and was last updated 6 November 2024.
        ?                                                                                                                                                               ^
-       -       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^
+       +       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^^^^
-       -     url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models
        ?                            -
+       +     url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv
        ?                                  ++++
-       -       url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                         -
+       +       url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                           ++++
    ~ Column yearly_count (changed metadata)
-       -   Describes the specific area, application, or field in which a large-scale AI model is designed to operate. The 2024 data is incomplete and was last updated 03 November 2024.
        ?                                                                                                                                                               ^^
+       +   Describes the specific area, application, or field in which a large-scale AI model is designed to operate. The 2024 data is incomplete and was last updated 6 November 2024.
        ?                                                                                                                                                               ^
-       -       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^
+       +       Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models'
        ?                                                                                                                                                           ^^^^^^
-       -     url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models
        ?                            -
+       +     url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv
        ?                                  ++++
-       -       url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                         -
+       +       url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models
        ?                           ++++
= Dataset garden/artificial_intelligence/2024-11-03/epoch_regressions
  = Table epoch_regressions
    ~ Column domain (changed metadata)
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
    ~ Column organization_categorization (changed metadata)
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
    ~ Column parameters (changed metadata)
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
    ~ Column publication_date (changed metadata)
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
    ~ Column training_computation_petaflop (changed metadata)
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
    ~ Column training_dataset_size__datapoints (changed metadata)
-       -       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’
        ?                                                                                                                                          -
+       +       Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’
        ?                                                                                                                                            ++++
-       -     url_main: https://epoch.ai/mlinputs/visualization
        ?                            -
+       +     url_main: https://epochai.org/mlinputs/visualization
        ?                              ++++
-       -     url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv
        ?                                -
+       +     url_download: https://epochai.org/data/epochdb/notable_ai_models.csv
        ?                                  ++++
= Dataset garden/education/2023-07-17/education_barro_lee_projections
  = Table education_barro_lee_projections
    ~ Dim country
-       - Removed values: 446 / 11802 (3.78%)
           year                   country
           2014              Cook Islands
           1986                   Oceania
           2008 South and West Asia (UIS)
           2014 South and West Asia (UIS)
           2007  Sub-Saharan Africa (UIS)
    ~ Dim year
-       - Removed values: 446 / 11802 (3.78%)
                            country  year
                       Cook Islands  2014
                            Oceania  1986
          South and West Asia (UIS)  2008
          South and West Asia (UIS)  2014
           Sub-Saharan Africa (UIS)  2007
~ Dataset garden/education/2023-07-17/education_lee_lee
-   - title: Human Capital in the Long Run (Lee and Lee 2016), WDI (World Bank) and UNESCO
    ?                                                        ^                 -----------
+   + title: Human Capital in the Long Run (Lee and Lee 2016) and WDI (World Bank)
    ?                                                        ^^^^
  = Table education_lee_lee
    ~ Dim country
-       - Removed values: 701 / 12737 (5.50%)
           year                                country
           2022                           Cook Islands
           2007 North America and Western Europe (UIS)
           2007                                Oceania
           2003              South and West Asia (UIS)
           2019               Sub-Saharan Africa (UIS)
    ~ Dim year
-       - Removed values: 701 / 12737 (5.50%)
                                         country  year
                                    Cook Islands  2022
          North America and Western Europe (UIS)  2007
                                         Oceania  2007
                       South and West Asia (UIS)  2003
                        Sub-Saharan Africa (UIS)  2019
    ~ Column f_primary_enrollment_rates_combined_wb (changed metadata, changed data)
-       -   Total number of female students of the official age group for primary education who are enrolled in any level of education, expressed as a percentage of the corresponding female population. Divide the total number of female students in the official school age range for primary education who are enrolled in any level of education by the female population of the same age group and multiply the result by 100. The difference between the total NER and the adjusted NER provides a measure of the proportion of children in the official relevant school age group who are enrolled in levels of education below the one intended for their age. The difference between the total NER and the adjusted NER for primary education is due to enrolment in pre-primary education. The total NER should be based on total enrolment of the official relevant school age group in any level of education for all types of schools and education institutions, including public, private and all other institutions that provide organized educational programmes.
+       +   Net enrollment rate is the ratio of children of official school age who are enrolled in school to the population of the corresponding official school age. Primary education provides children with basic reading, writing, and mathematics s

...diff too long, truncated...

Automatically updated datasets matching weekly_wildfires|excess_mortality|covid|fluid|flunet|country_profile|garden/ihme_gbd/2019/gbd_risk are not included

Edited: 2024-11-25 10:56:08 UTC
Execution time: 4.52 seconds

@lucasrodes lucasrodes changed the title population: exploration 📊 population: exploration (public server) Dec 12, 2024
@lucasrodes lucasrodes changed the title 📊 population: exploration (public server) 📊 population: exploration (shared externally) Dec 12, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants