Skip to content

Commit

Permalink
Merge pull request #8487 from jorisvandenbossche/doc-fixes
Browse files Browse the repository at this point in the history
DOC: fix bunch of doc build errors
  • Loading branch information
jorisvandenbossche committed Oct 6, 2014
2 parents 9010424 + f92b2ab commit 795e059
Show file tree
Hide file tree
Showing 8 changed files with 21 additions and 21 deletions.
1 change: 0 additions & 1 deletion doc/source/api.rst
Original file line number Diff line number Diff line change
Expand Up @@ -819,7 +819,6 @@ Reshaping, sorting, transposing
.. autosummary::
:toctree: generated/

DataFrame.delevel
DataFrame.pivot
DataFrame.reorder_levels
DataFrame.sort
Expand Down
1 change: 0 additions & 1 deletion doc/source/index.rst.template
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,6 @@ See the package overview for more detail about what's in the library.
timedeltas
categorical
visualization
rplot
io
remote_data
enhancingperf
Expand Down
5 changes: 2 additions & 3 deletions doc/source/indexing.rst
Original file line number Diff line number Diff line change
Expand Up @@ -106,9 +106,8 @@ of multi-axis indexing.
label based access and not positional access is supported.
Thus, in such cases, it's usually better to be explicit and use ``.iloc`` or ``.loc``.

See more at :ref:`Advanced Indexing <advanced>`, :ref:`Advanced
Hierarchical <advanced.advanced_hierarchical>` and :ref:`Fallback Indexing
<advanced.fallback>`
See more at :ref:`Advanced Indexing <advanced>` and :ref:`Advanced
Hierarchical <advanced.advanced_hierarchical>`.

Getting values from an object with multi-axes selection uses the following
notation (using ``.loc`` as an example, but applies to ``.iloc`` and ``.ix`` as
Expand Down
2 changes: 1 addition & 1 deletion doc/source/missing_data.rst
Original file line number Diff line number Diff line change
Expand Up @@ -422,7 +422,7 @@ at the new values.
ser = Series(np.sort(np.random.uniform(size=100)))
# interpolate at new_index
new_index = ser.index + Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])
new_index = ser.index | Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])
interp_s = ser.reindex(new_index).interpolate(method='pchip')
interp_s[49:51]
Expand Down
2 changes: 1 addition & 1 deletion doc/source/visualization.rst
Original file line number Diff line number Diff line change
Expand Up @@ -689,7 +689,7 @@ See the `matplotlib pie documenation <http://matplotlib.org/api/pyplot_api.html#
plt.close('all')
.. _visualization.missing_data
.. _visualization.missing_data:

Plotting with Missing Data
--------------------------
Expand Down
18 changes: 9 additions & 9 deletions pandas/core/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -918,8 +918,8 @@ def cumcount(self, **kwargs):
ascending : bool, default True
If False, number in reverse, from length of group - 1 to 0.
Example
-------
Examples
--------
>>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']],
... columns=['A'])
Expand Down Expand Up @@ -963,8 +963,8 @@ def head(self, n=5):
Essentially equivalent to ``.apply(lambda x: x.head(n))``,
except ignores as_index flag.
Example
-------
Examples
--------
>>> df = DataFrame([[1, 2], [1, 4], [5, 6]],
columns=['A', 'B'])
Expand All @@ -990,8 +990,8 @@ def tail(self, n=5):
Essentially equivalent to ``.apply(lambda x: x.tail(n))``,
except ignores as_index flag.
Example
-------
Examples
--------
>>> df = DataFrame([[1, 2], [1, 4], [5, 6]],
columns=['A', 'B'])
Expand Down Expand Up @@ -2452,8 +2452,8 @@ def filter(self, func, dropna=True, *args, **kwargs):
dropna : Drop groups that do not pass the filter. True by default;
if False, groups that evaluate False are filled with NaNs.
Example
-------
Examples
--------
>>> grouped.filter(lambda x: x.mean() > 0)
Returns
Expand Down Expand Up @@ -3084,7 +3084,7 @@ def filter(self, func, dropna=True, *args, **kwargs):
Each subframe is endowed the attribute 'name' in case you need to know
which group you are working on.
Example
Examples
--------
>>> grouped = df.groupby(lambda x: mapping[x])
>>> grouped.filter(lambda x: x['A'].sum() + x['B'].sum() > 0)
Expand Down
4 changes: 3 additions & 1 deletion pandas/io/json.py
Original file line number Diff line number Diff line change
Expand Up @@ -573,7 +573,9 @@ def nested_to_record(ds, prefix="", level=0):
-------
d - dict or list of dicts, matching `ds`
Example:
Examples
--------
IN[52]: nested_to_record(dict(flat1=1,dict1=dict(c=1,d=2),
nested=dict(e=dict(c=1,d=2),d=2)))
Out[52]:
Expand Down
9 changes: 5 additions & 4 deletions pandas/tools/plotting.py
Original file line number Diff line number Diff line change
Expand Up @@ -2328,10 +2328,10 @@ def _plot(data, x=None, y=None, subplots=False,
series_ax = """ax : matplotlib axes object
If not passed, uses gca()"""

df_note = """- If `kind`='bar' or 'barh', you can specify relative alignments
df_note = """- If `kind` = 'bar' or 'barh', you can specify relative alignments
for bar plot layout by `position` keyword.
From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)
- If `kind`='hexbin', you can control the size of the bins with the
- If `kind` = 'hexbin', you can control the size of the bins with the
`gridsize` argument. By default, a histogram of the counts around each
`(x, y)` point is computed. You can specify alternative aggregations
by passing values to the `C` and `reduce_C_function` arguments.
Expand Down Expand Up @@ -2425,18 +2425,19 @@ def _plot(data, x=None, y=None, subplots=False,
Notes
-----
If `kind`='hexbin', you can control the size of the bins with the
If `kind` = 'hexbin', you can control the size of the bins with the
`gridsize` argument. By default, a histogram of the counts around each
`(x, y)` point is computed. You can specify alternative aggregations
by passing values to the `C` and `reduce_C_function` arguments.
`C` specifies the value at each `(x, y)` point and `reduce_C_function`
is a function of one argument that reduces all the values in a bin to
a single number (e.g. `mean`, `max`, `sum`, `std`).
If `kind`='scatter' and the argument `c` is the name of a dataframe column,
If `kind` = 'scatter' and the argument `c` is the name of a dataframe column,
the values of that column are used to color each point.
- See matplotlib documentation online for more on this subject
%(klass_note)s
"""

@Appender(_shared_docs['plot'] % _shared_doc_df_kwargs)
Expand Down

0 comments on commit 795e059

Please sign in to comment.