Skip to content

Commit

Permalink
CLN/TST: Remove makeTimeSeries (#56293)
Browse files Browse the repository at this point in the history
* CLN/TST: Remove makeTimeSeries

* adjust test
  • Loading branch information
mroeschke authored Dec 2, 2023
1 parent 6f245e6 commit 7c6d26f
Show file tree
Hide file tree
Showing 33 changed files with 322 additions and 125 deletions.
14 changes: 0 additions & 14 deletions pandas/_testing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,14 +101,11 @@
if TYPE_CHECKING:
from pandas._typing import (
Dtype,
Frequency,
NpDtype,
)

from pandas.core.arrays import ArrowExtensionArray

_N = 30

UNSIGNED_INT_NUMPY_DTYPES: list[NpDtype] = ["uint8", "uint16", "uint32", "uint64"]
UNSIGNED_INT_EA_DTYPES: list[Dtype] = ["UInt8", "UInt16", "UInt32", "UInt64"]
SIGNED_INT_NUMPY_DTYPES: list[NpDtype] = [int, "int8", "int16", "int32", "int64"]
Expand Down Expand Up @@ -339,16 +336,6 @@ def to_array(obj):
# Others


def makeTimeSeries(nper=None, freq: Frequency = "B", name=None) -> Series:
if nper is None:
nper = _N
return Series(
np.random.default_rng(2).standard_normal(nper),
index=date_range("2000-01-01", periods=nper, freq=freq),
name=name,
)


def makeCustomIndex(
nentries,
nlevels,
Expand Down Expand Up @@ -883,7 +870,6 @@ def shares_memory(left, right) -> bool:
"loc",
"makeCustomDataframe",
"makeCustomIndex",
"makeTimeSeries",
"maybe_produces_warning",
"NARROW_NP_DTYPES",
"NP_NAT_OBJECTS",
Expand Down
8 changes: 5 additions & 3 deletions pandas/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -766,9 +766,11 @@ def datetime_series() -> Series:
"""
Fixture for Series of floats with DatetimeIndex
"""
s = tm.makeTimeSeries()
s.name = "ts"
return s
return Series(
np.random.default_rng(2).standard_normal(30),
index=date_range("2000-01-01", periods=30, freq="B"),
name="ts",
)


def _create_series(index):
Expand Down
26 changes: 16 additions & 10 deletions pandas/tests/apply/test_series_apply.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
MultiIndex,
Series,
concat,
date_range,
timedelta_range,
)
import pandas._testing as tm
Expand Down Expand Up @@ -134,7 +135,7 @@ def foo2(x, b=2, c=0):

def test_series_apply_map_box_timestamps(by_row):
# GH#2689, GH#2627
ser = Series(pd.date_range("1/1/2000", periods=10))
ser = Series(date_range("1/1/2000", periods=10))

def func(x):
return (x.hour, x.day, x.month)
Expand Down Expand Up @@ -194,13 +195,11 @@ def test_apply_box_period():


def test_apply_datetimetz(by_row):
values = pd.date_range("2011-01-01", "2011-01-02", freq="h").tz_localize(
"Asia/Tokyo"
)
values = date_range("2011-01-01", "2011-01-02", freq="h").tz_localize("Asia/Tokyo")
s = Series(values, name="XX")

result = s.apply(lambda x: x + pd.offsets.Day(), by_row=by_row)
exp_values = pd.date_range("2011-01-02", "2011-01-03", freq="h").tz_localize(
exp_values = date_range("2011-01-02", "2011-01-03", freq="h").tz_localize(
"Asia/Tokyo"
)
exp = Series(exp_values, name="XX")
Expand Down Expand Up @@ -267,7 +266,7 @@ def test_apply_categorical_with_nan_values(series, by_row):

def test_apply_empty_integer_series_with_datetime_index(by_row):
# GH 21245
s = Series([], index=pd.date_range(start="2018-01-01", periods=0), dtype=int)
s = Series([], index=date_range(start="2018-01-01", periods=0), dtype=int)
result = s.apply(lambda x: x, by_row=by_row)
tm.assert_series_equal(result, s)

Expand Down Expand Up @@ -510,8 +509,12 @@ def test_series_apply_no_suffix_index(by_row):
DataFrame(np.repeat([[1, 2]], 2, axis=0), dtype="int64"),
),
(
tm.makeTimeSeries(nper=30),
DataFrame(np.repeat([[1, 2]], 30, axis=0), dtype="int64"),
Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
),
DataFrame(np.repeat([[1, 2]], 10, axis=0), dtype="int64"),
),
],
)
Expand All @@ -528,12 +531,15 @@ def test_apply_series_on_date_time_index_aware_series(dti, exp, aware):


@pytest.mark.parametrize(
"by_row, expected", [("compat", Series(np.ones(30), dtype="int64")), (False, 1)]
"by_row, expected", [("compat", Series(np.ones(10), dtype="int64")), (False, 1)]
)
def test_apply_scalar_on_date_time_index_aware_series(by_row, expected):
# GH 25959
# Calling apply on a localized time series should not cause an error
series = tm.makeTimeSeries(nper=30).tz_localize("UTC")
series = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10, tz="UTC"),
)
result = Series(series.index).apply(lambda x: 1, by_row=by_row)
tm.assert_equal(result, expected)

Expand Down
46 changes: 35 additions & 11 deletions pandas/tests/arithmetic/test_numeric.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
Timedelta,
TimedeltaIndex,
array,
date_range,
)
import pandas._testing as tm
from pandas.core import ops
Expand Down Expand Up @@ -733,7 +734,7 @@ def test_mul_datelike_raises(self, numeric_idx):
idx = numeric_idx
msg = "cannot perform __rmul__ with this index type"
with pytest.raises(TypeError, match=msg):
idx * pd.date_range("20130101", periods=5)
idx * date_range("20130101", periods=5)

def test_mul_size_mismatch_raises(self, numeric_idx):
idx = numeric_idx
Expand Down Expand Up @@ -820,7 +821,11 @@ def test_ops_np_scalar(self, other):
# TODO: This came from series.test.test_operators, needs cleanup
def test_operators_frame(self):
# rpow does not work with DataFrame
ts = tm.makeTimeSeries()
ts = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
ts.name = "ts"

df = pd.DataFrame({"A": ts})
Expand Down Expand Up @@ -926,8 +931,11 @@ def test_series_frame_radd_bug(self, fixed_now_ts):
expected = pd.DataFrame({"vals": vals.map(lambda x: "foo_" + x)})
tm.assert_frame_equal(result, expected)

ts = tm.makeTimeSeries()
ts.name = "ts"
ts = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)

# really raise this time
fix_now = fixed_now_ts.to_pydatetime()
Expand Down Expand Up @@ -955,8 +963,8 @@ def test_datetime64_with_index(self):
# GH#4629
# arithmetic datetime64 ops with an index
ser = Series(
pd.date_range("20130101", periods=5),
index=pd.date_range("20130101", periods=5),
date_range("20130101", periods=5),
index=date_range("20130101", periods=5),
)
expected = ser - ser.index.to_series()
result = ser - ser.index
Expand All @@ -969,7 +977,7 @@ def test_datetime64_with_index(self):

df = pd.DataFrame(
np.random.default_rng(2).standard_normal((5, 2)),
index=pd.date_range("20130101", periods=5),
index=date_range("20130101", periods=5),
)
df["date"] = pd.Timestamp("20130102")
df["expected"] = df["date"] - df.index.to_series()
Expand Down Expand Up @@ -1031,7 +1039,11 @@ def test_frame_operators_empty_like(self, dtype):
)
def test_series_operators_arithmetic(self, all_arithmetic_functions, func):
op = all_arithmetic_functions
series = tm.makeTimeSeries().rename("ts")
series = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
other = func(series)
compare_op(series, other, op)

Expand All @@ -1040,7 +1052,11 @@ def test_series_operators_arithmetic(self, all_arithmetic_functions, func):
)
def test_series_operators_compare(self, comparison_op, func):
op = comparison_op
series = tm.makeTimeSeries().rename("ts")
series = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
other = func(series)
compare_op(series, other, op)

Expand All @@ -1050,7 +1066,11 @@ def test_series_operators_compare(self, comparison_op, func):
ids=["multiply", "slice", "constant"],
)
def test_divmod(self, func):
series = tm.makeTimeSeries().rename("ts")
series = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
other = func(series)
results = divmod(series, other)
if isinstance(other, abc.Iterable) and len(series) != len(other):
Expand Down Expand Up @@ -1081,7 +1101,11 @@ def test_series_divmod_zero(self):
# -1/0 == -np.inf
# 1/-0.0 == -np.inf
# -1/-0.0 == np.inf
tser = tm.makeTimeSeries().rename("ts")
tser = Series(
np.arange(1, 11, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
other = tser * 0

result = divmod(tser, other)
Expand Down
4 changes: 3 additions & 1 deletion pandas/tests/frame/methods/test_reindex.py
Original file line number Diff line number Diff line change
Expand Up @@ -609,7 +609,9 @@ def test_reindex_sparse(self):
tm.assert_frame_equal(result, expected)

def test_reindex(self, float_frame, using_copy_on_write):
datetime_series = tm.makeTimeSeries(nper=30)
datetime_series = Series(
np.arange(30, dtype=np.float64), index=date_range("2020-01-01", periods=30)
)

newFrame = float_frame.reindex(datetime_series.index)

Expand Down
12 changes: 8 additions & 4 deletions pandas/tests/frame/test_constructors.py
Original file line number Diff line number Diff line change
Expand Up @@ -500,9 +500,11 @@ def test_constructor_ordereddict(self):
assert expected == list(df.columns)

def test_constructor_dict(self):
datetime_series = tm.makeTimeSeries(nper=30)
datetime_series = Series(
np.arange(30, dtype=np.float64), index=date_range("2020-01-01", periods=30)
)
# test expects index shifted by 5
datetime_series_short = tm.makeTimeSeries(nper=30)[5:]
datetime_series_short = datetime_series[5:]

frame = DataFrame({"col1": datetime_series, "col2": datetime_series_short})

Expand Down Expand Up @@ -626,8 +628,10 @@ def test_constructor_dict_nan_tuple_key(self, value):
tm.assert_frame_equal(result, expected)

def test_constructor_dict_order_insertion(self):
datetime_series = tm.makeTimeSeries(nper=30)
datetime_series_short = tm.makeTimeSeries(nper=25)
datetime_series = Series(
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
)
datetime_series_short = datetime_series[:5]

# GH19018
# initialization ordering: by insertion order if python>= 3.6
Expand Down
4 changes: 3 additions & 1 deletion pandas/tests/groupby/aggregate/test_other.py
Original file line number Diff line number Diff line change
Expand Up @@ -296,7 +296,9 @@ def raiseException(df):


def test_series_agg_multikey():
ts = tm.makeTimeSeries()
ts = Series(
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
)
grouped = ts.groupby([lambda x: x.year, lambda x: x.month])

result = grouped.agg("sum")
Expand Down
7 changes: 5 additions & 2 deletions pandas/tests/groupby/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,9 @@
from pandas import (
DataFrame,
Index,
Series,
date_range,
)
import pandas._testing as tm
from pandas.core.groupby.base import (
reduction_kernels,
transformation_kernels,
Expand Down Expand Up @@ -47,7 +47,10 @@ def df():

@pytest.fixture
def ts():
return tm.makeTimeSeries()
return Series(
np.random.default_rng(2).standard_normal(30),
index=date_range("2000-01-01", periods=30, freq="B"),
)


@pytest.fixture
Expand Down
10 changes: 8 additions & 2 deletions pandas/tests/groupby/methods/test_describe.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,9 @@
DataFrame,
Index,
MultiIndex,
Series,
Timestamp,
date_range,
)
import pandas._testing as tm

Expand All @@ -17,7 +19,9 @@ def test_apply_describe_bug(multiindex_dataframe_random_data):


def test_series_describe_multikey():
ts = tm.makeTimeSeries()
ts = Series(
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
)
grouped = ts.groupby([lambda x: x.year, lambda x: x.month])
result = grouped.describe()
tm.assert_series_equal(result["mean"], grouped.mean(), check_names=False)
Expand All @@ -26,7 +30,9 @@ def test_series_describe_multikey():


def test_series_describe_single():
ts = tm.makeTimeSeries()
ts = Series(
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
)
grouped = ts.groupby(lambda x: x.month)
result = grouped.apply(lambda x: x.describe())
expected = grouped.describe().stack(future_stack=True)
Expand Down
5 changes: 4 additions & 1 deletion pandas/tests/io/formats/test_to_string.py
Original file line number Diff line number Diff line change
Expand Up @@ -1075,7 +1075,10 @@ def test_to_string_timedelta64(self):
assert result == "0 1 days\n1 2 days\n2 3 days"

def test_to_string(self):
ts = tm.makeTimeSeries()
ts = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10, freq="B"),
)
buf = StringIO()

s = ts.to_string()
Expand Down
7 changes: 5 additions & 2 deletions pandas/tests/io/json/test_pandas.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,8 +108,11 @@ def categorical_frame(self):
def datetime_series(self):
# Same as usual datetime_series, but with index freq set to None,
# since that doesn't round-trip, see GH#33711
ser = tm.makeTimeSeries()
ser.name = "ts"
ser = Series(
1.1 * np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
ser.index = ser.index._with_freq(None)
return ser

Expand Down
4 changes: 3 additions & 1 deletion pandas/tests/io/pytables/test_append.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,9 @@ def test_append_series(setup_path):
with ensure_clean_store(setup_path) as store:
# basic
ss = Series(range(20), dtype=np.float64, index=[f"i_{i}" for i in range(20)])
ts = tm.makeTimeSeries()
ts = Series(
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
)
ns = Series(np.arange(100))

store.append("ss", ss)
Expand Down
Loading

0 comments on commit 7c6d26f

Please sign in to comment.