-
-
Notifications
You must be signed in to change notification settings - Fork 18.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add tests for engines and add is_monotonic_uint(32|16)
- Loading branch information
1 parent
5e2ccc8
commit a519cc4
Showing
6 changed files
with
233 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
import numpy as np | ||
import pytest | ||
|
||
from pandas._libs import index as libindex | ||
|
||
|
||
@pytest.fixture(params=[ | ||
(libindex.Int64Engine, np.int64), | ||
(libindex.Int32Engine, np.int32), | ||
(libindex.Int16Engine, np.int16), | ||
(libindex.Int8Engine, np.int8), | ||
(libindex.UInt64Engine, np.uint64), | ||
(libindex.UInt32Engine, np.uint32), | ||
(libindex.UInt16Engine, np.uint16), | ||
(libindex.UInt8Engine, np.uint8), | ||
(libindex.Float64Engine, np.float64), | ||
(libindex.Float32Engine, np.float32), | ||
], ids=lambda x: x[0].__name__) | ||
def numeric_indexing_engine_type_and_dtype(request): | ||
return request.param |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
import numpy as np | ||
|
||
import pandas.util.testing as tm | ||
from pandas import compat | ||
from pandas._libs import algos as libalgos, index as libindex | ||
|
||
|
||
class TestNumericEngine(object): | ||
def test_is_monotonic(self, numeric_indexing_engine_type_and_dtype): | ||
engine_type, dtype = numeric_indexing_engine_type_and_dtype | ||
num = 1000 | ||
arr = np.array([1] * num + [2] * num + [3] * num, dtype=dtype) | ||
|
||
# monotonic increasing | ||
engine = engine_type(lambda: arr, len(arr)) | ||
assert engine.is_monotonic_increasing is True | ||
assert engine.is_monotonic_decreasing is False | ||
|
||
# monotonic decreasing | ||
engine = engine_type(lambda: arr[::-1], len(arr)) | ||
assert engine.is_monotonic_increasing is False | ||
assert engine.is_monotonic_decreasing is True | ||
|
||
# neither monotonic increasing or decreasing | ||
arr = np.array([1] * num + [2] * num + [1] * num, dtype=dtype) | ||
engine = engine_type(lambda: arr[::-1], len(arr)) | ||
assert engine.is_monotonic_increasing is False | ||
assert engine.is_monotonic_decreasing is False | ||
|
||
def test_is_unique(self, numeric_indexing_engine_type_and_dtype): | ||
engine_type, dtype = numeric_indexing_engine_type_and_dtype | ||
|
||
# unique | ||
arr = np.array([1, 3, 2], dtype=dtype) | ||
engine = engine_type(lambda: arr, len(arr)) | ||
assert engine.is_unique is True | ||
|
||
# not unique | ||
arr = np.array([1, 2, 1], dtype=dtype) | ||
engine = engine_type(lambda: arr, len(arr)) | ||
assert engine.is_unique is False | ||
|
||
def test_get_loc(self, numeric_indexing_engine_type_and_dtype): | ||
engine_type, dtype = numeric_indexing_engine_type_and_dtype | ||
|
||
# unique | ||
arr = np.array([1, 2, 3], dtype=dtype) | ||
engine = engine_type(lambda: arr, len(arr)) | ||
assert engine.get_loc(2) == 1 | ||
|
||
# monotonic | ||
num = 1000 | ||
arr = np.array([1] * num + [2] * num + [3] * num, dtype=dtype) | ||
engine = engine_type(lambda: arr, len(arr)) | ||
assert engine.get_loc(2) == slice(1000, 2000) | ||
|
||
# not monotonic | ||
arr = np.array([1, 2, 3] * num, dtype=dtype) | ||
engine = engine_type(lambda: arr, len(arr)) | ||
expected = np.array([False, True, False] * num, dtype=bool) | ||
result = engine.get_loc(2) | ||
assert (result == expected).all() | ||
|
||
def test_get_backfill_indexer( | ||
self, numeric_indexing_engine_type_and_dtype): | ||
engine_type, dtype = numeric_indexing_engine_type_and_dtype | ||
|
||
arr = np.array([1, 5, 10], dtype=dtype) | ||
engine = engine_type(lambda: arr, len(arr)) | ||
|
||
new = np.array(compat.range(12), dtype=dtype) | ||
result = engine.get_backfill_indexer(new) | ||
|
||
expected = libalgos.backfill(arr, new) | ||
tm.assert_numpy_array_equal(result, expected) | ||
|
||
def test_get_pad_indexer( | ||
self, numeric_indexing_engine_type_and_dtype): | ||
engine_type, dtype = numeric_indexing_engine_type_and_dtype | ||
|
||
arr = np.array([1, 5, 10], dtype=dtype) | ||
engine = engine_type(lambda: arr, len(arr)) | ||
|
||
new = np.array(compat.range(12), dtype=dtype) | ||
result = engine.get_pad_indexer(new) | ||
|
||
expected = libalgos.pad(arr, new) | ||
tm.assert_numpy_array_equal(result, expected) | ||
|
||
|
||
class TestObjectEngine(object): | ||
engine_type = libindex.ObjectEngine | ||
dtype = np.object_ | ||
values = list('abc') | ||
|
||
def test_is_monotonic(self): | ||
|
||
num = 1000 | ||
arr = np.array(['a'] * num + ['a'] * num + ['c'] * num, | ||
dtype=self.dtype) | ||
|
||
# monotonic increasing | ||
engine = self.engine_type(lambda: arr, len(arr)) | ||
assert engine.is_monotonic_increasing is True | ||
assert engine.is_monotonic_decreasing is False | ||
|
||
# monotonic decreasing | ||
engine = self.engine_type(lambda: arr[::-1], len(arr)) | ||
assert engine.is_monotonic_increasing is False | ||
assert engine.is_monotonic_decreasing is True | ||
|
||
# neither monotonic increasing or decreasing | ||
arr = np.array(['a'] * num + ['b'] * num + ['a'] * num, | ||
dtype=self.dtype) | ||
engine = self.engine_type(lambda: arr[::-1], len(arr)) | ||
assert engine.is_monotonic_increasing is False | ||
assert engine.is_monotonic_decreasing is False | ||
|
||
def test_is_unique(self): | ||
# unique | ||
arr = np.array(self.values, dtype=self.dtype) | ||
engine = self.engine_type(lambda: arr, len(arr)) | ||
assert engine.is_unique is True | ||
|
||
# not unique | ||
arr = np.array(['a', 'b', 'a'], dtype=self.dtype) | ||
engine = self.engine_type(lambda: arr, len(arr)) | ||
assert engine.is_unique is False | ||
|
||
def test_get_loc(self): | ||
# unique | ||
arr = np.array(self.values, dtype=self.dtype) | ||
engine = self.engine_type(lambda: arr, len(arr)) | ||
assert engine.get_loc('b') == 1 | ||
|
||
# monotonic | ||
num = 1000 | ||
arr = np.array(['a'] * num + ['b'] * num + ['c'] * num, | ||
dtype=self.dtype) | ||
engine = self.engine_type(lambda: arr, len(arr)) | ||
assert engine.get_loc('b') == slice(1000, 2000) | ||
|
||
# not monotonic | ||
arr = np.array(self.values * num, dtype=self.dtype) | ||
engine = self.engine_type(lambda: arr, len(arr)) | ||
expected = np.array([False, True, False] * num, dtype=bool) | ||
result = engine.get_loc('b') | ||
assert (result == expected).all() | ||
|
||
def test_get_backfill_indexer(self): | ||
arr = np.array(['a', 'e', 'j'], dtype=self.dtype) | ||
engine = self.engine_type(lambda: arr, len(arr)) | ||
|
||
new = np.array(list('abcdefghij'), dtype=self.dtype) | ||
result = engine.get_backfill_indexer(new) | ||
|
||
expected = libalgos.backfill_object(arr, new) | ||
tm.assert_numpy_array_equal(result, expected) | ||
|
||
def test_get_pad_indexer(self): | ||
arr = np.array(['a', 'e', 'j'], dtype=self.dtype) | ||
engine = self.engine_type(lambda: arr, len(arr)) | ||
|
||
new = np.array(list('abcdefghij'), dtype=self.dtype) | ||
result = engine.get_pad_indexer(new) | ||
|
||
expected = libalgos.pad_object(arr, new) | ||
tm.assert_numpy_array_equal(result, expected) |