Skip to content

Commit

Permalink
DOC: update the pandas.DataFrame.all docstring (#20216)
Browse files Browse the repository at this point in the history
  • Loading branch information
mlaforet authored and jreback committed Mar 11, 2018
1 parent a44bae3 commit afa6c42
Showing 1 changed file with 63 additions and 10 deletions.
73 changes: 63 additions & 10 deletions pandas/core/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -7584,11 +7584,10 @@ def _add_numeric_operations(cls):
cls.any = _make_logical_function(
cls, 'any', name, name2, axis_descr,
'Return whether any element is True over requested axis',
nanops.nanany)
nanops.nanany, '', '')
cls.all = _make_logical_function(
cls, 'all', name, name2, axis_descr,
'Return whether all elements are True over requested axis',
nanops.nanall)
cls, 'all', name, name2, axis_descr, _all_doc,
nanops.nanall, _all_examples, _all_see_also)

@Substitution(outname='mad',
desc="Return the mean absolute deviation of the values "
Expand Down Expand Up @@ -7845,25 +7844,78 @@ def _doc_parms(cls):
%(outname)s : %(name1)s or %(name2)s (if level specified)\n"""

_bool_doc = """
%(desc)s
Parameters
----------
axis : %(axis_descr)s
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA
will be NA.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a %(name1)s
particular level, collapsing into a %(name1)s.
bool_only : boolean, default None
Include only boolean columns. If None, will attempt to use everything,
then use only boolean data. Not implemented for Series.
**kwargs : any, default None
Additional keywords have no affect but might be accepted for
compatibility with numpy.
Returns
-------
%(outname)s : %(name1)s or %(name2)s (if level specified)\n"""
%(outname)s : %(name1)s or %(name2)s (if level specified)
%(examples)s
%(see_also)s"""

_all_doc = """\
Return whether all elements are True over series or dataframe axis.
Returns True if all elements within a series or along a dataframe
axis are non-zero, not-empty or not-False."""

_all_examples = """\
Examples
--------
Series
>>> pd.Series([True, True]).all()
True
>>> pd.Series([True, False]).all()
False
Dataframes
Create a dataframe from a dictionary.
>>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]})
>>> df
col1 col2
0 True True
1 True False
Default behaviour checks if column-wise values all return True.
>>> df.all()
col1 True
col2 False
dtype: bool
Adding axis=1 argument will check if row-wise values all return True.
>>> df.all(axis=1)
0 True
1 False
dtype: bool
"""

_all_see_also = """\
See also
--------
pandas.Series.all : Return True if all elements are True
pandas.DataFrame.any : Return True if one (or more) elements are True
"""

_cnum_doc = """
Expand Down Expand Up @@ -8046,9 +8098,10 @@ def cum_func(self, axis=None, skipna=True, *args, **kwargs):
return set_function_name(cum_func, name, cls)


def _make_logical_function(cls, name, name1, name2, axis_descr, desc, f):
def _make_logical_function(cls, name, name1, name2, axis_descr, desc, f,
examples, see_also):
@Substitution(outname=name, desc=desc, name1=name1, name2=name2,
axis_descr=axis_descr)
axis_descr=axis_descr, examples=examples, see_also=see_also)
@Appender(_bool_doc)
def logical_func(self, axis=None, bool_only=None, skipna=None, level=None,
**kwargs):
Expand Down

0 comments on commit afa6c42

Please sign in to comment.