Skip to content

Commit

Permalink
DOC GH22893 Fix docstring of groupby in pandas/core/generic.py (#22920)
Browse files Browse the repository at this point in the history
  • Loading branch information
tonytao2012 authored and WillAyd committed Oct 3, 2018
1 parent 08ecba8 commit b0f9a10
Showing 1 changed file with 73 additions and 28 deletions.
101 changes: 73 additions & 28 deletions pandas/core/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -7034,8 +7034,12 @@ def clip_lower(self, threshold, axis=None, inplace=False):
def groupby(self, by=None, axis=0, level=None, as_index=True, sort=True,
group_keys=True, squeeze=False, observed=False, **kwargs):
"""
Group series using mapper (dict or key function, apply given function
to group, return result as series) or by a series of columns.
Group DataFrame or Series using a mapper or by a Series of columns.
A groupby operation involves some combination of splitting the
object, applying a function, and combining the results. This can be
used to group large amounts of data and compute operations on these
groups.
Parameters
----------
Expand All @@ -7048,54 +7052,95 @@ def groupby(self, by=None, axis=0, level=None, as_index=True, sort=True,
values are used as-is determine the groups. A label or list of
labels may be passed to group by the columns in ``self``. Notice
that a tuple is interpreted a (single) key.
axis : int, default 0
axis : {0 or 'index', 1 or 'columns'}, default 0
Split along rows (0) or columns (1).
level : int, level name, or sequence of such, default None
If the axis is a MultiIndex (hierarchical), group by a particular
level or levels
as_index : boolean, default True
level or levels.
as_index : bool, default True
For aggregated output, return object with group labels as the
index. Only relevant for DataFrame input. as_index=False is
effectively "SQL-style" grouped output
sort : boolean, default True
effectively "SQL-style" grouped output.
sort : bool, default True
Sort group keys. Get better performance by turning this off.
Note this does not influence the order of observations within each
group. groupby preserves the order of rows within each group.
group_keys : boolean, default True
When calling apply, add group keys to index to identify pieces
squeeze : boolean, default False
reduce the dimensionality of the return type if possible,
otherwise return a consistent type
observed : boolean, default False
This only applies if any of the groupers are Categoricals
group. Groupby preserves the order of rows within each group.
group_keys : bool, default True
When calling apply, add group keys to index to identify pieces.
squeeze : bool, default False
Reduce the dimensionality of the return type if possible,
otherwise return a consistent type.
observed : bool, default False
This only applies if any of the groupers are Categoricals.
If True: only show observed values for categorical groupers.
If False: show all values for categorical groupers.
.. versionadded:: 0.23.0
**kwargs
Optional, only accepts keyword argument 'mutated' and is passed
to groupby.
Returns
-------
GroupBy object
DataFrameGroupBy or SeriesGroupBy
Depends on the calling object and returns groupby object that
contains information about the groups.
Examples
See Also
--------
DataFrame results
>>> data.groupby(func, axis=0).mean()
>>> data.groupby(['col1', 'col2'])['col3'].mean()
DataFrame with hierarchical index
>>> data.groupby(['col1', 'col2']).mean()
resample : Convenience method for frequency conversion and resampling
of time series.
Notes
-----
See the `user guide
<http://pandas.pydata.org/pandas-docs/stable/groupby.html>`_ for more.
See also
Examples
--------
resample : Convenience method for frequency conversion and resampling
of time series.
>>> df = pd.DataFrame({'Animal' : ['Falcon', 'Falcon',
... 'Parrot', 'Parrot'],
... 'Max Speed' : [380., 370., 24., 26.]})
>>> df
Animal Max Speed
0 Falcon 380.0
1 Falcon 370.0
2 Parrot 24.0
3 Parrot 26.0
>>> df.groupby(['Animal']).mean()
Max Speed
Animal
Falcon 375.0
Parrot 25.0
**Hierarchical Indexes**
We can groupby different levels of a hierarchical index
using the `level` parameter:
>>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'],
... ['Capitve', 'Wild', 'Capitve', 'Wild']]
>>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type'))
>>> df = pd.DataFrame({'Max Speed' : [390., 350., 30., 20.]},
... index=index)
>>> df
Max Speed
Animal Type
Falcon Capitve 390.0
Wild 350.0
Parrot Capitve 30.0
Wild 20.0
>>> df.groupby(level=0).mean()
Max Speed
Animal
Falcon 370.0
Parrot 25.0
>>> df.groupby(level=1).mean()
Max Speed
Type
Capitve 210.0
Wild 185.0
"""
from pandas.core.groupby.groupby import groupby

Expand Down

0 comments on commit b0f9a10

Please sign in to comment.