Skip to content

Commit

Permalink
ENH: Handle generic timestamp dtypes with Series
Browse files Browse the repository at this point in the history
We only use the nanosecond frequency, so generic
timestamp frequencies should be interpreted with
the nanosecond frequency.

xref gh-15524 (comment).
  • Loading branch information
gfyoung committed Apr 12, 2017
1 parent c4d71ce commit d581e3e
Show file tree
Hide file tree
Showing 4 changed files with 67 additions and 2 deletions.
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.20.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -320,6 +320,7 @@ Other Enhancements
^^^^^^^^^^^^^^^^^^

- Integration with the ``feather-format``, including a new top-level ``pd.read_feather()`` and ``DataFrame.to_feather()`` method, see :ref:`here <io.feather>`.
- The ``Series`` constructor will now accept timestamp dtypes that do not specify frequency like ``np.datetime64`` (:issue:`15524`)
- ``Series.str.replace()`` now accepts a callable, as replacement, which is passed to ``re.sub`` (:issue:`15055`)
- ``Series.str.replace()`` now accepts a compiled regular expression as a pattern (:issue:`15446`)

Expand Down
24 changes: 24 additions & 0 deletions pandas/tests/series/test_constructors.py
Original file line number Diff line number Diff line change
Expand Up @@ -839,3 +839,27 @@ def test_constructor_cast_object(self):
s = Series(date_range('1/1/2000', periods=10), dtype=object)
exp = Series(date_range('1/1/2000', periods=10))
tm.assert_series_equal(s, exp)

def test_constructor_generic_timestamp(self):
# see gh-15524
dtype = np.timedelta64
s = Series([], dtype=dtype)

assert s.empty
assert s.dtype == 'm8[ns]'

dtype = np.datetime64
s = Series([], dtype=dtype)

assert s.empty
assert s.dtype == 'M8[ns]'

# These timestamps have the wrong frequencies,
# so an Exception should be raised now.
msg = "cannot convert timedeltalike"
with tm.assertRaisesRegexp(TypeError, msg):
Series([], dtype='m8[ps]')

msg = "cannot convert datetimelike"
with tm.assertRaisesRegexp(TypeError, msg):
Series([], dtype='M8[ps]')
32 changes: 32 additions & 0 deletions pandas/tests/series/test_dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -153,6 +153,38 @@ def test_astype_dict(self):
self.assertRaises(KeyError, s.astype, {'abc': str, 'def': str})
self.assertRaises(KeyError, s.astype, {0: str})

def test_astype_generic_timestamp(self):
# see gh-15524
data = [1]

s = Series(data)
dtype = np.datetime64
result = s.astype(dtype)
expected = Series(data, dtype=dtype)
assert_series_equal(result, expected)

s = Series(data)
dtype = np.timedelta64
result = s.astype(dtype)
expected = Series(data, dtype=dtype)
assert_series_equal(result, expected)

def test_astype_empty_constructor_equality(self):
# see gh-15524

for dtype in np.typecodes['All']:
if dtype not in ('S', 'V'): # poor support (if any) currently
init_empty = Series([], dtype=dtype)
astype_empty = Series([]).astype(dtype)

try:
assert_series_equal(init_empty, astype_empty)
except AssertionError as e:
name = np.dtype(dtype).name
msg = "{dtype} failed: ".format(dtype=name) + str(e)

raise AssertionError(msg)

def test_complexx(self):
# GH4819
# complex access for ndarray compat
Expand Down
12 changes: 10 additions & 2 deletions pandas/types/cast.py
Original file line number Diff line number Diff line change
Expand Up @@ -603,6 +603,14 @@ def astype_nansafe(arr, dtype, copy=True):
# work around NumPy brokenness, #1987
return lib.astype_intsafe(arr.ravel(), dtype).reshape(arr.shape)

# NumPy arrays don't handle generic timestamp dtypes well. Since
# we only use the nanosecond frequency, interpret generic timestamp
# dtypes as nanosecond frequency.
if dtype.name == "datetime64":
dtype = np.dtype('M8[ns]')
elif dtype.name == "timedelta64":
dtype = np.dtype('m8[ns]')

if copy:
return arr.astype(dtype)
return arr.view(dtype)
Expand Down Expand Up @@ -855,7 +863,7 @@ def maybe_cast_to_datetime(value, dtype, errors='raise'):

# force the dtype if needed
if is_datetime64 and not is_dtype_equal(dtype, _NS_DTYPE):
if dtype.name == 'datetime64[ns]':
if dtype.name in ('datetime64', 'datetime64[ns]'):
dtype = _NS_DTYPE
else:
raise TypeError("cannot convert datetimelike to "
Expand All @@ -869,7 +877,7 @@ def maybe_cast_to_datetime(value, dtype, errors='raise'):
value = [value]

elif is_timedelta64 and not is_dtype_equal(dtype, _TD_DTYPE):
if dtype.name == 'timedelta64[ns]':
if dtype.name in ('timedelta64', 'timedelta64[ns]'):
dtype = _TD_DTYPE
else:
raise TypeError("cannot convert timedeltalike to "
Expand Down

0 comments on commit d581e3e

Please sign in to comment.