Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

pd.to_datetime() throws if caching is on with Null-like arguments #22305

Closed
realead opened this issue Aug 13, 2018 · 6 comments · Fixed by #26078
Closed

pd.to_datetime() throws if caching is on with Null-like arguments #22305

realead opened this issue Aug 13, 2018 · 6 comments · Fixed by #26078
Labels
Bug Datetime Datetime data dtype
Milestone

Comments

@realead
Copy link
Contributor

realead commented Aug 13, 2018

Code Sample, a copy-pastable example if possible

import pandas as pd
result = pd.to_datetime([pd.NaT, None], cache=True)

Problem description

It results in error:

...
~/anaconda3/lib/python3.6/site-packages/pandas/core/indexes/base.py in get_indexer(self, target, method, limit, tolerance)
3242
3243 if not self.is_unique:
-> 3244 raise InvalidIndexError('Reindexing only valid with uniquely'
3245 ' valued Index objects')
3246

InvalidIndexError: Reindexing only valid with uniquely valued Index objects

Expected Output

The same as result = pd.to_datetime([pd.NaT, None],cache=False):

DatetimeIndex(['NaT', 'NaT'], dtype='datetime64[ns]', freq=None)

Output of pd.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.6.2.final.0 python-bits: 64 OS: Linux OS-release: 4.4.0-53-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8

pandas: 0.23.4
pytest: 3.2.1
pip: 10.0.1
setuptools: 36.5.0.post20170921
Cython: 0.28.3
numpy: 1.13.1
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 6.1.0
sphinx: 1.6.3
patsy: 0.4.1
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: 1.2.1
tables: 3.4.2
numexpr: 2.6.2
feather: None
matplotlib: 2.0.2
openpyxl: 2.4.8
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 0.9.8
lxml: 3.8.0
bs4: 4.6.0
html5lib: 0.9999999
sqlalchemy: 1.1.13
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: 0.1.3
fastparquet: None
pandas_gbq: None
pandas_datareader: None
[paste the output of pd.show_versions() here below this line]

@jorisvandenbossche jorisvandenbossche added this to the Contributions Welcome milestone Aug 13, 2018
@jorisvandenbossche
Copy link
Member

Thanks for the report! Looking into it / a fix is certainly welcome.

@mroeschke
Copy link
Member

We have this test:

def test_datetime_bool(self, cache):

Where currently this test with cache=True is skipped because of #18111 which I think is similar to what you found.

@mroeschke mroeschke changed the title pd.to_datetime() throws if caching is on pd.to_datetime() throws if caching is on with Null-like arguments Aug 13, 2018
@mroeschke mroeschke added the Datetime Datetime data dtype label Aug 13, 2018
@realead
Copy link
Contributor Author

realead commented Aug 13, 2018

In the end it comes down to the following difference between unique and infer_dtype:

While unique mangles pd.NaT and np.nan but not None:

            # `val is None` below is exception to prevent mangling of None and
            # other NA values; note however that other NA values (ex: pd.NaT
            # and np.nan) will still get mangled, so many not be a permanent
            # solution; see GH 20866
           if not checknull(val) or val is None:
                  ...

infer_dtype magles them all:

        if val is None or util.is_nan(val):
            pass
        elif val is NaT:
            seen_pdnat = True
        else:
            ....

I ask myself, whether this infer_dtype-business is really necessary and maybe can be avoided.

This issue kind of blocks PR #22296, because PR #22296 fixes the mangling of pd.NaT and np.nan in unique, and thus adding another problem similar to [None, pd.NaT]: i.e. [np.nan, pd.NaT] - and this case is covered in the test suite.

@realead
Copy link
Contributor Author

realead commented Aug 16, 2018

This test should probably pass once it is fixed:

    def test_NA_values_with_cache(self):
        # GH 22305
        na_values = [None, np.nan, pd.NaT]
        # check pairwise, that no pair of na values
        # is mangled
        for f in na_values:
            for s in na_values:
                if f is not s:  # otherwise not unique
                    expected = Index([NaT, NaT], dtype='datetime64[ns]')
                    result = to_datetime([f, s], cache=True)
                    tm.assert_index_equal(result, expected)

@blinkseb
Copy link

Hello guys,

It looks like this bug is back in business in the latest version, but a bit harder to trigger:

pandas versions >>> pd.show_versions()

INSTALLED VERSIONS

commit : f2ca0a2
python : 3.8.5.final.0
python-bits : 64
OS : Linux
OS-release : 5.7.15-200.fc32.x86_64
Version : #1 SMP Tue Aug 11 16:36:14 UTC 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_GB.UTF-8
LOCALE : en_GB.UTF-8

pandas : 1.1.1
numpy : 1.19.1
pytz : 2020.1
dateutil : 2.8.1
pip : 20.0.2
setuptools : 46.1.3
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : 0.10.0
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : 1.3.19
tables : None
tabulate : 0.8.7
xarray : None
xlrd : None
xlwt : None
numba : None

How to reproduce:

import pandas as pd

s = pd.Series([pd.NaT] * 2000 + [None] * 2000, dtype='object')
pd.to_datetime(s)

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/sbrochet/venvs/tmp-fa372ee62ee9bef/lib64/python3.8/site-packages/pandas/core/tools/datetimes.py", line 801, in to_datetime
    result = arg.map(cache_array)
  File "/home/sbrochet/venvs/tmp-fa372ee62ee9bef/lib64/python3.8/site-packages/pandas/core/series.py", line 3970, in map
    new_values = super()._map_values(arg, na_action=na_action)
  File "/home/sbrochet/venvs/tmp-fa372ee62ee9bef/lib64/python3.8/site-packages/pandas/core/base.py", line 1131, in _map_values
    indexer = mapper.index.get_indexer(values)
  File "/home/sbrochet/venvs/tmp-fa372ee62ee9bef/lib64/python3.8/site-packages/pandas/core/indexes/base.py", line 2980, in get_indexer
    raise InvalidIndexError(
pandas.errors.InvalidIndexError: Reindexing only valid with uniquely valued Index objects

The key here is to have enough entries in the Series to trigger the caching system.

@jreback
Copy link
Contributor

jreback commented Aug 24, 2020

pls raise a new issue with the example

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Bug Datetime Datetime data dtype
Projects
None yet
Development

Successfully merging a pull request may close this issue.

5 participants