Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TST: Deprecate assert_numpy_array_equivalent #10512

Merged
merged 1 commit into from
Jul 28, 2015
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 23 additions & 23 deletions pandas/computation/tests/test_eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,7 @@ def check_complex_cmp_op(self, lhs, cmp1, rhs, binop, cmp2):
expected = _eval_single_bin(
lhs_new, binop, rhs_new, self.engine)
result = pd.eval(ex, engine=self.engine, parser=self.parser)
tm.assert_numpy_array_equivalent(result, expected)
tm.assert_numpy_array_equal(result, expected)

def check_chained_cmp_op(self, lhs, cmp1, mid, cmp2, rhs):
skip_these = _scalar_skip
Expand All @@ -240,7 +240,7 @@ def check_operands(left, right, cmp_op):
for ex in (ex1, ex2, ex3):
result = pd.eval(ex, engine=self.engine,
parser=self.parser)
tm.assert_numpy_array_equivalent(result, expected)
tm.assert_numpy_array_equal(result, expected)

def check_simple_cmp_op(self, lhs, cmp1, rhs):
ex = 'lhs {0} rhs'.format(cmp1)
Expand All @@ -251,13 +251,13 @@ def check_simple_cmp_op(self, lhs, cmp1, rhs):
else:
expected = _eval_single_bin(lhs, cmp1, rhs, self.engine)
result = pd.eval(ex, engine=self.engine, parser=self.parser)
tm.assert_numpy_array_equivalent(result, expected)
tm.assert_numpy_array_equal(result, expected)

def check_binary_arith_op(self, lhs, arith1, rhs):
ex = 'lhs {0} rhs'.format(arith1)
result = pd.eval(ex, engine=self.engine, parser=self.parser)
expected = _eval_single_bin(lhs, arith1, rhs, self.engine)
tm.assert_numpy_array_equivalent(result, expected)
tm.assert_numpy_array_equal(result, expected)
ex = 'lhs {0} rhs {0} rhs'.format(arith1)
result = pd.eval(ex, engine=self.engine, parser=self.parser)
nlhs = _eval_single_bin(lhs, arith1, rhs,
Expand All @@ -273,7 +273,7 @@ def check_alignment(self, result, nlhs, ghs, op):
pass
else:
expected = self.ne.evaluate('nlhs {0} ghs'.format(op))
tm.assert_numpy_array_equivalent(result, expected)
tm.assert_numpy_array_equal(result, expected)

# modulus, pow, and floor division require special casing

Expand All @@ -291,7 +291,7 @@ def check_floor_division(self, lhs, arith1, rhs):
if self.engine == 'python':
res = pd.eval(ex, engine=self.engine, parser=self.parser)
expected = lhs // rhs
tm.assert_numpy_array_equivalent(res, expected)
tm.assert_numpy_array_equal(res, expected)
else:
self.assertRaises(TypeError, pd.eval, ex, local_dict={'lhs': lhs,
'rhs': rhs},
Expand Down Expand Up @@ -325,8 +325,8 @@ def check_pow(self, lhs, arith1, rhs):

if (np.isscalar(lhs) and np.isscalar(rhs) and
_is_py3_complex_incompat(result, expected)):
self.assertRaises(AssertionError, tm.assert_numpy_array_equivalent, result,
expected)
self.assertRaises(AssertionError, tm.assert_numpy_array_equal,
result, expected)
else:
assert_allclose(result, expected)

Expand All @@ -345,12 +345,12 @@ def check_single_invert_op(self, lhs, cmp1, rhs):
elb = np.array([bool(el)])
expected = ~elb
result = pd.eval('~elb', engine=self.engine, parser=self.parser)
tm.assert_numpy_array_equivalent(expected, result)
tm.assert_numpy_array_equal(expected, result)

for engine in self.current_engines:
tm.skip_if_no_ne(engine)
tm.assert_numpy_array_equivalent(result, pd.eval('~elb', engine=engine,
parser=self.parser))
tm.assert_numpy_array_equal(result, pd.eval('~elb', engine=engine,
parser=self.parser))

def check_compound_invert_op(self, lhs, cmp1, rhs):
skip_these = 'in', 'not in'
Expand All @@ -370,13 +370,13 @@ def check_compound_invert_op(self, lhs, cmp1, rhs):
else:
expected = ~expected
result = pd.eval(ex, engine=self.engine, parser=self.parser)
tm.assert_numpy_array_equivalent(expected, result)
tm.assert_numpy_array_equal(expected, result)

# make sure the other engines work the same as this one
for engine in self.current_engines:
tm.skip_if_no_ne(engine)
ev = pd.eval(ex, engine=self.engine, parser=self.parser)
tm.assert_numpy_array_equivalent(ev, result)
tm.assert_numpy_array_equal(ev, result)

def ex(self, op, var_name='lhs'):
return '{0}{1}'.format(op, var_name)
Expand Down Expand Up @@ -639,17 +639,17 @@ def test_identical(self):

x = np.array([1])
result = pd.eval('x', engine=self.engine, parser=self.parser)
tm.assert_numpy_array_equivalent(result, np.array([1]))
tm.assert_numpy_array_equal(result, np.array([1]))
self.assertEqual(result.shape, (1, ))

x = np.array([1.5])
result = pd.eval('x', engine=self.engine, parser=self.parser)
tm.assert_numpy_array_equivalent(result, np.array([1.5]))
tm.assert_numpy_array_equal(result, np.array([1.5]))
self.assertEqual(result.shape, (1, ))

x = np.array([False])
result = pd.eval('x', engine=self.engine, parser=self.parser)
tm.assert_numpy_array_equivalent(result, np.array([False]))
tm.assert_numpy_array_equal(result, np.array([False]))
self.assertEqual(result.shape, (1, ))


Expand Down Expand Up @@ -707,7 +707,7 @@ def check_alignment(self, result, nlhs, ghs, op):
pass
else:
expected = eval('nlhs {0} ghs'.format(op))
tm.assert_numpy_array_equivalent(result, expected)
tm.assert_numpy_array_equal(result, expected)


class TestEvalPythonPandas(TestEvalPythonPython):
Expand Down Expand Up @@ -1118,10 +1118,10 @@ def test_truediv(self):

if PY3:
res = self.eval(ex, truediv=False)
tm.assert_numpy_array_equivalent(res, np.array([1.0]))
tm.assert_numpy_array_equal(res, np.array([1.0]))

res = self.eval(ex, truediv=True)
tm.assert_numpy_array_equivalent(res, np.array([1.0]))
tm.assert_numpy_array_equal(res, np.array([1.0]))

res = self.eval('1 / 2', truediv=True)
expec = 0.5
Expand All @@ -1140,10 +1140,10 @@ def test_truediv(self):
self.assertEqual(res, expec)
else:
res = self.eval(ex, truediv=False)
tm.assert_numpy_array_equivalent(res, np.array([1]))
tm.assert_numpy_array_equal(res, np.array([1]))

res = self.eval(ex, truediv=True)
tm.assert_numpy_array_equivalent(res, np.array([1.0]))
tm.assert_numpy_array_equal(res, np.array([1.0]))

res = self.eval('1 / 2', truediv=True)
expec = 0.5
Expand Down Expand Up @@ -1446,8 +1446,8 @@ class TestScope(object):

def check_global_scope(self, e, engine, parser):
tm.skip_if_no_ne(engine)
tm.assert_numpy_array_equivalent(_var_s * 2, pd.eval(e, engine=engine,
parser=parser))
tm.assert_numpy_array_equal(_var_s * 2, pd.eval(e, engine=engine,
parser=parser))

def test_global_scope(self):
e = '_var_s * 2'
Expand Down
3 changes: 1 addition & 2 deletions pandas/io/tests/test_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@
from pandas.util.testing import (assert_series_equal, assert_produces_warning,
network, assert_frame_equal)
import pandas.util.testing as tm
from numpy.testing import assert_array_equal

if compat.PY3:
from urllib.error import HTTPError
Expand Down Expand Up @@ -533,7 +532,7 @@ def test_fred_part2(self):
[848.3],
[933.3]]
result = web.get_data_fred("A09024USA144NNBR", start="1915").ix[:5]
assert_array_equal(result.values, np.array(expected))
tm.assert_numpy_array_equal(result.values, np.array(expected))

@network
def test_invalid_series(self):
Expand Down
77 changes: 38 additions & 39 deletions pandas/io/tests/test_json/test_ujson.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,7 @@
import pandas.compat as compat

import numpy as np
from numpy.testing import (assert_array_equal,
assert_array_almost_equal_nulp,
from numpy.testing import (assert_array_almost_equal_nulp,
assert_approx_equal)
import pytz
import dateutil
Expand Down Expand Up @@ -166,15 +165,15 @@ def test_encodeArrayOfNestedArrays(self):
#self.assertEqual(output, json.dumps(input))
self.assertEqual(input, ujson.decode(output))
input = np.array(input)
assert_array_equal(input, ujson.decode(output, numpy=True, dtype=input.dtype))
tm.assert_numpy_array_equal(input, ujson.decode(output, numpy=True, dtype=input.dtype))

def test_encodeArrayOfDoubles(self):
input = [ 31337.31337, 31337.31337, 31337.31337, 31337.31337] * 10
output = ujson.encode(input)
self.assertEqual(input, json.loads(output))
#self.assertEqual(output, json.dumps(input))
self.assertEqual(input, ujson.decode(output))
assert_array_equal(np.array(input), ujson.decode(output, numpy=True))
tm.assert_numpy_array_equal(np.array(input), ujson.decode(output, numpy=True))

def test_doublePrecisionTest(self):
input = 30.012345678901234
Expand Down Expand Up @@ -271,7 +270,7 @@ def test_encodeArrayInArray(self):
self.assertEqual(input, json.loads(output))
self.assertEqual(output, json.dumps(input))
self.assertEqual(input, ujson.decode(output))
assert_array_equal(np.array(input), ujson.decode(output, numpy=True))
tm.assert_numpy_array_equal(np.array(input), ujson.decode(output, numpy=True))
pass

def test_encodeIntConversion(self):
Expand Down Expand Up @@ -307,7 +306,7 @@ def test_encodeListConversion(self):
output = ujson.encode(input)
self.assertEqual(input, json.loads(output))
self.assertEqual(input, ujson.decode(output))
assert_array_equal(np.array(input), ujson.decode(output, numpy=True))
tm.assert_numpy_array_equal(np.array(input), ujson.decode(output, numpy=True))
pass

def test_encodeDictConversion(self):
Expand Down Expand Up @@ -676,8 +675,8 @@ def test_encodeListLongConversion(self):
output = ujson.encode(input)
self.assertEqual(input, json.loads(output))
self.assertEqual(input, ujson.decode(output))
assert_array_equal(np.array(input), ujson.decode(output, numpy=True,
dtype=np.int64))
tm.assert_numpy_array_equal(np.array(input), ujson.decode(output, numpy=True,
dtype=np.int64))
pass

def test_encodeLongConversion(self):
Expand Down Expand Up @@ -755,7 +754,7 @@ def test_loadFile(self):
f = StringIO("[1,2,3,4]")
self.assertEqual([1, 2, 3, 4], ujson.load(f))
f = StringIO("[1,2,3,4]")
assert_array_equal(np.array([1, 2, 3, 4]), ujson.load(f, numpy=True))
tm.assert_numpy_array_equal(np.array([1, 2, 3, 4]), ujson.load(f, numpy=True))

def test_loadFileLikeObject(self):
class filelike:
Expand All @@ -768,7 +767,7 @@ def read(self):
f = filelike()
self.assertEqual([1, 2, 3, 4], ujson.load(f))
f = filelike()
assert_array_equal(np.array([1, 2, 3, 4]), ujson.load(f, numpy=True))
tm.assert_numpy_array_equal(np.array([1, 2, 3, 4]), ujson.load(f, numpy=True))

def test_loadFileArgsError(self):
try:
Expand Down Expand Up @@ -906,7 +905,7 @@ def testBoolArray(self):
inpt = np.array([True, False, True, True, False, True, False , False],
dtype=np.bool)
outp = np.array(ujson.decode(ujson.encode(inpt)), dtype=np.bool)
assert_array_equal(inpt, outp)
tm.assert_numpy_array_equal(inpt, outp)

def testInt(self):
num = np.int(2562010)
Expand Down Expand Up @@ -943,7 +942,7 @@ def testIntArray(self):
for dtype in dtypes:
inpt = arr.astype(dtype)
outp = np.array(ujson.decode(ujson.encode(inpt)), dtype=dtype)
assert_array_equal(inpt, outp)
tm.assert_numpy_array_equal(inpt, outp)

def testIntMax(self):
num = np.int(np.iinfo(np.int).max)
Expand Down Expand Up @@ -1008,26 +1007,26 @@ def testArrays(self):
arr = np.arange(100);

arr = arr.reshape((10, 10))
assert_array_equal(np.array(ujson.decode(ujson.encode(arr))), arr)
assert_array_equal(ujson.decode(ujson.encode(arr), numpy=True), arr)
tm.assert_numpy_array_equal(np.array(ujson.decode(ujson.encode(arr))), arr)
tm.assert_numpy_array_equal(ujson.decode(ujson.encode(arr), numpy=True), arr)

arr = arr.reshape((5, 5, 4))
assert_array_equal(np.array(ujson.decode(ujson.encode(arr))), arr)
assert_array_equal(ujson.decode(ujson.encode(arr), numpy=True), arr)
tm.assert_numpy_array_equal(np.array(ujson.decode(ujson.encode(arr))), arr)
tm.assert_numpy_array_equal(ujson.decode(ujson.encode(arr), numpy=True), arr)

arr = arr.reshape((100, 1))
assert_array_equal(np.array(ujson.decode(ujson.encode(arr))), arr)
assert_array_equal(ujson.decode(ujson.encode(arr), numpy=True), arr)
tm.assert_numpy_array_equal(np.array(ujson.decode(ujson.encode(arr))), arr)
tm.assert_numpy_array_equal(ujson.decode(ujson.encode(arr), numpy=True), arr)

arr = np.arange(96);
arr = arr.reshape((2, 2, 2, 2, 3, 2))
assert_array_equal(np.array(ujson.decode(ujson.encode(arr))), arr)
assert_array_equal(ujson.decode(ujson.encode(arr), numpy=True), arr)
tm.assert_numpy_array_equal(np.array(ujson.decode(ujson.encode(arr))), arr)
tm.assert_numpy_array_equal(ujson.decode(ujson.encode(arr), numpy=True), arr)

l = ['a', list(), dict(), dict(), list(),
42, 97.8, ['a', 'b'], {'key': 'val'}]
arr = np.array(l)
assert_array_equal(np.array(ujson.decode(ujson.encode(arr))), arr)
tm.assert_numpy_array_equal(np.array(ujson.decode(ujson.encode(arr))), arr)

arr = np.arange(100.202, 200.202, 1, dtype=np.float32);
arr = arr.reshape((5, 5, 4))
Expand Down Expand Up @@ -1158,49 +1157,49 @@ def testDataFrame(self):
# column indexed
outp = DataFrame(ujson.decode(ujson.encode(df)))
self.assertTrue((df == outp).values.all())
assert_array_equal(df.columns, outp.columns)
assert_array_equal(df.index, outp.index)
tm.assert_numpy_array_equal(df.columns, outp.columns)
tm.assert_numpy_array_equal(df.index, outp.index)

dec = _clean_dict(ujson.decode(ujson.encode(df, orient="split")))
outp = DataFrame(**dec)
self.assertTrue((df == outp).values.all())
assert_array_equal(df.columns, outp.columns)
assert_array_equal(df.index, outp.index)
tm.assert_numpy_array_equal(df.columns, outp.columns)
tm.assert_numpy_array_equal(df.index, outp.index)

outp = DataFrame(ujson.decode(ujson.encode(df, orient="records")))
outp.index = df.index
self.assertTrue((df == outp).values.all())
assert_array_equal(df.columns, outp.columns)
tm.assert_numpy_array_equal(df.columns, outp.columns)

outp = DataFrame(ujson.decode(ujson.encode(df, orient="values")))
outp.index = df.index
self.assertTrue((df.values == outp.values).all())

outp = DataFrame(ujson.decode(ujson.encode(df, orient="index")))
self.assertTrue((df.transpose() == outp).values.all())
assert_array_equal(df.transpose().columns, outp.columns)
assert_array_equal(df.transpose().index, outp.index)
tm.assert_numpy_array_equal(df.transpose().columns, outp.columns)
tm.assert_numpy_array_equal(df.transpose().index, outp.index)

def testDataFrameNumpy(self):
df = DataFrame([[1,2,3], [4,5,6]], index=['a', 'b'], columns=['x', 'y', 'z'])

# column indexed
outp = DataFrame(ujson.decode(ujson.encode(df), numpy=True))
self.assertTrue((df == outp).values.all())
assert_array_equal(df.columns, outp.columns)
assert_array_equal(df.index, outp.index)
tm.assert_numpy_array_equal(df.columns, outp.columns)
tm.assert_numpy_array_equal(df.index, outp.index)

dec = _clean_dict(ujson.decode(ujson.encode(df, orient="split"),
numpy=True))
outp = DataFrame(**dec)
self.assertTrue((df == outp).values.all())
assert_array_equal(df.columns, outp.columns)
assert_array_equal(df.index, outp.index)
tm.assert_numpy_array_equal(df.columns, outp.columns)
tm.assert_numpy_array_equal(df.index, outp.index)

outp = DataFrame(ujson.decode(ujson.encode(df, orient="index"), numpy=True))
self.assertTrue((df.transpose() == outp).values.all())
assert_array_equal(df.transpose().columns, outp.columns)
assert_array_equal(df.transpose().index, outp.index)
tm.assert_numpy_array_equal(df.transpose().columns, outp.columns)
tm.assert_numpy_array_equal(df.transpose().index, outp.index)

def testDataFrameNested(self):
df = DataFrame([[1,2,3], [4,5,6]], index=['a', 'b'], columns=['x', 'y', 'z'])
Expand Down Expand Up @@ -1233,18 +1232,18 @@ def testDataFrameNumpyLabelled(self):
# column indexed
outp = DataFrame(*ujson.decode(ujson.encode(df), numpy=True, labelled=True))
self.assertTrue((df.T == outp).values.all())
assert_array_equal(df.T.columns, outp.columns)
assert_array_equal(df.T.index, outp.index)
tm.assert_numpy_array_equal(df.T.columns, outp.columns)
tm.assert_numpy_array_equal(df.T.index, outp.index)

outp = DataFrame(*ujson.decode(ujson.encode(df, orient="records"), numpy=True, labelled=True))
outp.index = df.index
self.assertTrue((df == outp).values.all())
assert_array_equal(df.columns, outp.columns)
tm.assert_numpy_array_equal(df.columns, outp.columns)

outp = DataFrame(*ujson.decode(ujson.encode(df, orient="index"), numpy=True, labelled=True))
self.assertTrue((df == outp).values.all())
assert_array_equal(df.columns, outp.columns)
assert_array_equal(df.index, outp.index)
tm.assert_numpy_array_equal(df.columns, outp.columns)
tm.assert_numpy_array_equal(df.index, outp.index)

def testSeries(self):
s = Series([10, 20, 30, 40, 50, 60], name="series", index=[6,7,8,9,10,15])
Expand Down
Loading