Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BUG: prevent coercion to datetime64[ns] when a Series is initialized with both tz-naive and tz-aware #18361

Merged
merged 4 commits into from
Nov 23, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v0.22.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -195,5 +195,5 @@ Other
^^^^^

- Improved error message when attempting to use a Python keyword as an identifier in a numexpr query (:issue:`18221`)
-
- Fixed a bug where creating a Series from an array that contains both tz-naive and tz-aware values will result in a Series whose dtype is tz-aware instead of object (:issue:`16406`)
-
20 changes: 17 additions & 3 deletions pandas/_libs/src/inference.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -464,7 +464,8 @@ cpdef object infer_datetimelike_array(object arr):
- timedelta: we have *only* timedeltas and maybe strings, nulls
- nat: we do not have *any* date, datetimes or timedeltas, but do have
at least a NaT
- mixed: other objects (strings or actual objects)
- mixed: other objects (strings, a mix of tz-aware and tz-naive, or
actual objects)

Parameters
----------
Expand All @@ -479,6 +480,7 @@ cpdef object infer_datetimelike_array(object arr):
cdef:
Py_ssize_t i, n = len(arr)
bint seen_timedelta = 0, seen_date = 0, seen_datetime = 0
bint seen_tz_aware = 0, seen_tz_naive = 0
bint seen_nat = 0
list objs = []
object v
Expand All @@ -496,8 +498,20 @@ cpdef object infer_datetimelike_array(object arr):
pass
elif v is NaT:
seen_nat = 1
elif is_datetime(v) or util.is_datetime64_object(v):
# datetime, or np.datetime64
elif is_datetime(v):
# datetime
seen_datetime = 1

# disambiguate between tz-naive and tz-aware
if v.tzinfo is None:
seen_tz_naive = 1
else:
seen_tz_aware = 1

if seen_tz_naive and seen_tz_aware:
return 'mixed'
elif util.is_datetime64_object(v):
# np.datetime64
seen_datetime = 1
elif is_date(v):
seen_date = 1
Expand Down
70 changes: 70 additions & 0 deletions pandas/tests/dtypes/test_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -419,6 +419,10 @@ def test_mixed_dtypes_remain_object_array(self):

class TestTypeInference(object):

# Dummy class used for testing with Python objects
class Dummy():
pass

def test_length_zero(self):
result = lib.infer_dtype(np.array([], dtype='i4'))
assert result == 'integer'
Expand Down Expand Up @@ -655,6 +659,72 @@ def test_infer_dtype_period(self):
dtype=object)
assert lib.infer_dtype(arr) == 'mixed'

@pytest.mark.parametrize(
"data",
[
[datetime(2017, 6, 12, 19, 30), datetime(2017, 3, 11, 1, 15)],
[Timestamp("20170612"), Timestamp("20170311")],
[Timestamp("20170612", tz='US/Eastern'),
Timestamp("20170311", tz='US/Eastern')],
[date(2017, 6, 12),
Timestamp("20170311", tz='US/Eastern')],
[np.datetime64("2017-06-12"), np.datetime64("2017-03-11")],
[np.datetime64("2017-06-12"), datetime(2017, 3, 11, 1, 15)]
]
)
def test_infer_datetimelike_array_datetime(self, data):
assert lib.infer_datetimelike_array(data) == "datetime"

@pytest.mark.parametrize(
"data",
[
[timedelta(2017, 6, 12), timedelta(2017, 3, 11)],
[timedelta(2017, 6, 12), date(2017, 3, 11)],
[np.timedelta64(2017, "D"), np.timedelta64(6, "s")],
[np.timedelta64(2017, "D"), timedelta(2017, 3, 11)]
]
)
def test_infer_datetimelike_array_timedelta(self, data):
assert lib.infer_datetimelike_array(data) == "timedelta"

def test_infer_datetimelike_array_date(self):
arr = [date(2017, 6, 12), date(2017, 3, 11)]
assert lib.infer_datetimelike_array(arr) == "date"

@pytest.mark.parametrize(
"data",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you add strings, ints, float, and a python object

e.g.

class Foo():
    pass;
Foo()

should all return mixed (as this is a date infered)

[
["2017-06-12", "2017-03-11"],
[20170612, 20170311],
[20170612.5, 20170311.8],
[Dummy(), Dummy()],
[Timestamp("20170612"), Timestamp("20170311", tz='US/Eastern')],
[Timestamp("20170612"), 20170311],
[timedelta(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')]
]
)
def test_infer_datetimelike_array_mixed(self, data):
assert lib.infer_datetimelike_array(data) == "mixed"

@pytest.mark.parametrize(
"first, expected",
[
[[None], "mixed"],
[[np.nan], "mixed"],
[[pd.NaT], "nat"],
[[datetime(2017, 6, 12, 19, 30), pd.NaT], "datetime"],
[[np.datetime64("2017-06-12"), pd.NaT], "datetime"],
[[date(2017, 6, 12), pd.NaT], "date"],
[[timedelta(2017, 6, 12), pd.NaT], "timedelta"],
[[np.timedelta64(2017, "D"), pd.NaT], "timedelta"]
]
)
@pytest.mark.parametrize("second", [None, np.nan])
def test_infer_datetimelike_array_nan_nat_like(self, first, second,
expected):
first.append(second)
assert lib.infer_datetimelike_array(first) == expected

def test_infer_dtype_all_nan_nat_like(self):
arr = np.array([np.nan, np.nan])
assert lib.infer_dtype(arr) == 'floating'
Expand Down
9 changes: 9 additions & 0 deletions pandas/tests/series/test_constructors.py
Original file line number Diff line number Diff line change
Expand Up @@ -777,6 +777,15 @@ def f():
s = Series([pd.NaT, np.nan, '1 Day'])
assert s.dtype == 'timedelta64[ns]'

# GH 16406
def test_constructor_mixed_tz(self):
s = Series([Timestamp('20130101'),
Timestamp('20130101', tz='US/Eastern')])
expected = Series([Timestamp('20130101'),
Timestamp('20130101', tz='US/Eastern')],
dtype='object')
assert_series_equal(s, expected)

def test_NaT_scalar(self):
series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]')

Expand Down