Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix missing arg in timestamp asvs #18503

Merged
merged 1 commit into from
Nov 26, 2017

Conversation

jbrockmendel
Copy link
Member

Pretty good bet that I broke this a little while ago...

@codecov
Copy link

codecov bot commented Nov 26, 2017

Codecov Report

Merging #18503 into master will increase coverage by 0.02%.
The diff coverage is n/a.

Impacted file tree graph

@@            Coverage Diff             @@
##           master   #18503      +/-   ##
==========================================
+ Coverage    91.3%   91.32%   +0.02%     
==========================================
  Files         163      163              
  Lines       49781    49781              
==========================================
+ Hits        45451    45463      +12     
+ Misses       4330     4318      -12
Flag Coverage Δ
#multiple 89.12% <ø> (+0.02%) ⬆️
#single 40.72% <ø> (ø) ⬆️
Impacted Files Coverage Δ
pandas/plotting/_converter.py 65.25% <0%> (+1.81%) ⬆️

Continue to review full report at Codecov.

Legend - Click here to learn more
Δ = absolute <relative> (impact), ø = not affected, ? = missing data
Powered by Codecov. Last update 38f41e6...c5125af. Read the comment docs.

@jreback jreback added the Benchmark Performance (ASV) benchmarks label Nov 26, 2017
@jreback jreback added this to the 0.22.0 milestone Nov 26, 2017
@jreback jreback merged commit 29206ee into pandas-dev:master Nov 26, 2017
@jreback
Copy link
Contributor

jreback commented Nov 26, 2017

also, can you run a full asv and compare to 0.21.0, see how doing so far.

@jbrockmendel
Copy link
Member Author

also, can you run a full asv and compare to 0.21.0, see how doing so far.

Will do. You uh, might want to get a second opinion though.

@jbrockmendel jbrockmendel deleted the timestamp_asv branch November 26, 2017 15:38
@jreback
Copy link
Contributor

jreback commented Nov 26, 2017

@mroeschke can u run vs 0.21 and show significant diffs?

@mroeschke
Copy link
Member

mroeschke commented Nov 27, 2017

I think 8137209 is the right commit hash for 0.21 ref

(Note: After = v0.21, Before = master)

$ asv continuous -f 1.1 upstream/master 81372093f1fdc0c07e4b45ba0f47b

before           after         ratio
     [982ad07c]       [81372093]
!           23.1s           failed      n/a  gil.nogil_datetime_fields.time_datetime_to_period
!     8.86±0.02ms           failed      n/a  timeseries.ToDatetime.time_cache_false_with_dup_seconds_and_unit
!     3.80±0.01ms           failed      n/a  timeseries.ToDatetime.time_cache_false_with_dup_string_dates
!     3.99±0.01ms           failed      n/a  timeseries.ToDatetime.time_cache_false_with_dup_string_dates_and_format
!       417±0.1ms           failed      n/a  timeseries.ToDatetime.time_cache_false_with_dup_string_tzoffset_dates
!     7.96±0.02ms           failed      n/a  timeseries.ToDatetime.time_cache_true_with_dup_seconds_and_unit
!     5.38±0.03ms           failed      n/a  timeseries.ToDatetime.time_cache_true_with_dup_string_dates
!     5.42±0.03ms           failed      n/a  timeseries.ToDatetime.time_cache_true_with_dup_string_dates_and_format
!     5.76±0.03ms           failed      n/a  timeseries.ToDatetime.time_cache_true_with_dup_string_tzoffset_dates
+     5.81±0.01ms            2.83s   487.49  timedelta.DatetimeAccessor.time_timedelta_dt_accessor_seconds
+     5.78±0.01ms            2.80s   484.24  timedelta.DatetimeAccessor.time_timedelta_dt_accessor_nanoseconds
+     5.82±0.01ms            2.82s   484.08  timedelta.DatetimeAccessor.time_timedelta_dt_accessor_days
+     5.85±0.02ms            2.78s   475.79  timedelta.DatetimeAccessor.time_timedelta_dt_accessor_microseconds
+         119±4ms            12.7s   106.88  plotting.Plotting.time_series_plot
+       234±0.9ms            12.4s    53.18  plotting.Plotting.time_frame_plot
+          56.8ms            749ms    13.19  timeseries.DatetimeIndex.time_to_date
+       549±0.6μs      2.32±0.01ms     4.23  series_methods.series_map_series.time_series_map_series
+           7.20s            24.8s     3.45  offset.ApplyIndex.time_apply_index(<BusinessYearEnd: month=12>)
+           7.51s            25.3s     3.37  offset.ApplyIndex.time_apply_series(<BusinessYearEnd: month=12>)
+     67.0±0.07μs        183±0.1μs     2.73  offset.SemiMonthOffset.time_end_apply
+      66.2±0.1μs        177±0.2μs     2.67  offset.SemiMonthOffset.time_begin_apply
+         312±1ns          809±6ns     2.59  timedelta.TimedeltaProperties.time_timedelta_seconds
+      80.3±0.2μs        190±0.4μs     2.36  offset.SemiMonthOffset.time_end_incr
+      80.0±0.1μs        189±0.4μs     2.36  offset.SemiMonthOffset.time_begin_incr
+      89.9±0.1μs          205±2μs     2.28  offset.SemiMonthOffset.time_begin_decr
+      88.8±0.1μs        201±0.5μs     2.26  offset.SemiMonthOffset.time_end_incr_n
+      89.0±0.2μs        201±0.3μs     2.25  offset.SemiMonthOffset.time_begin_incr_n
+      54.0±0.1ms       121±0.05ms     2.25  categoricals.Constructor.time_all_nan
+      91.8±0.1μs        205±0.3μs     2.24  offset.SemiMonthOffset.time_end_decr
+      97.9±0.2μs        213±0.8μs     2.18  offset.SemiMonthOffset.time_end_decr_n
+       319±0.3ns          693±1ns     2.18  timedelta.TimedeltaProperties.time_timedelta_days
+      99.5±0.2μs        216±0.3μs     2.17  offset.SemiMonthOffset.time_begin_decr_n
+       313±0.2ns          674±2ns     2.15  timedelta.TimedeltaProperties.time_timedelta_microseconds
+     2.18±0.01ms      4.10±0.02ms     1.88  series_methods.series_map_dict.time_series_map_dict
+           7.21s            13.6s     1.88  offset.ApplyIndex.time_apply_index(<BusinessMonthBegin>)
+           7.26s            13.6s     1.88  offset.ApplyIndex.time_apply_index(<BusinessQuarterBegin: startingMonth=3>)
+           7.23s            13.5s     1.86  offset.ApplyIndex.time_apply_index(<BusinessMonthEnd>)
+           7.49s            13.9s     1.85  offset.ApplyIndex.time_apply_series(<BusinessMonthBegin>)
+           7.24s            13.3s     1.84  offset.ApplyIndex.time_apply_index(<BusinessYearBegin: month=1>)
+           7.51s            13.7s     1.83  offset.ApplyIndex.time_apply_series(<BusinessYearBegin: month=1>)
+           7.60s            13.8s     1.82  offset.ApplyIndex.time_apply_series(<BusinessQuarterBegin: startingMonth=3>)
+       266±0.4μs          481±4μs     1.81  offset.CBMonthEnd.time_custom_bmonthend_incr
+           7.59s            13.7s     1.80  offset.ApplyIndex.time_apply_series(<BusinessMonthEnd>)
+       300±0.8μs        527±0.5μs     1.76  offset.CBMonthEnd.time_custom_bmonthend_incr_n
+       312±0.6μs        539±0.8μs     1.73  offset.CBMonthEnd.time_custom_bmonthend_decr_n
+           7.57s            11.3s     1.50  offset.ApplyIndex.time_apply_series(<BusinessQuarterEnd: startingMonth=3>)
+           7.29s            10.8s     1.48  offset.ApplyIndex.time_apply_index(<BusinessQuarterEnd: startingMonth=3>)
+        609±30ns          864±2ns     1.42  indexing.IndexerLookup.time_lookup_iloc
+        614±20ns          861±6ns     1.40  indexing.IndexerLookup.time_lookup_loc
+      68.1±0.2μs       92.1±0.4μs     1.35  period.PeriodUnaryMethods.time_now('M')
+     3.61±0.01ms      4.85±0.02ms     1.34  indexing.PanelIndexing.time_subset
+       112±0.5ms        143±0.8ms     1.27  io_sql.WriteSQLTypes.time_string_sqlalchemy
+     1.13±0.04ms      1.43±0.04ms     1.26  series_methods.series_nlargest2.time_series_nlargest2
+       123±0.7ms        154±0.5ms     1.25  io_sql.WriteSQLTypes.time_float_sqlalchemy
+       348±0.8μs          435±1μs     1.25  offset.CBMonthBegin.time_custom_bmonthbegin_decr_n
+     1.11±0.04ms      1.38±0.03ms     1.24  series_methods.series_nsmallest2.time_series_nsmallest2
+     11.5±0.08ms      14.2±0.04ms     1.24  groupby.groupby_nth.time_groupby_series_nth_any
+       423±0.6μs        521±0.8μs     1.23  offset.CBMonthBegin.time_custom_bmonthbegin_incr_n
+         191±1ms          234±1ms     1.23  plotting.TimeseriesPlotting.time_plot_regular_compat
+         197±2ms          240±4ms     1.22  plotting.TimeseriesPlotting.time_plot_irregular
+     17.0±0.01μs      20.7±0.03μs     1.22  index_object.Float64.time_slice_indexer_basic
+     3.09±0.03μs      3.73±0.01μs     1.21  period.PeriodProperties.time_month('M')
+     6.33±0.03ms      7.63±0.02ms     1.21  groupby.groupby_nth.time_groupby_series_nth_none
+      13.8±0.1ms      16.6±0.04ms     1.21  timeseries.DatetimeAccessor.time_dt_accessor_normalize
+     3.07±0.02μs      3.66±0.02μs     1.19  period.PeriodProperties.time_dayofweek('M')
+     1.65±0.06ms      1.96±0.04ms     1.18  series_methods.series_nlargest1.time_series_nlargest1
+          16.8μs      19.7±0.04μs     1.17  index_object.Float64.time_slice_indexer_even
+     16.7±0.01μs      19.5±0.02μs     1.17  index_object.StringIndex.time_slice_indexer_even
+       219±0.7ms          256±1ms     1.17  io_sql.WriteSQL.time_sqlalchemy
+       178±0.3μs          206±1μs     1.16  period.PeriodUnaryMethods.time_now('min')
+       119±0.4μs        138±0.4μs     1.16  period.PeriodUnaryMethods.time_asfreq('M')
+       118±0.1μs        137±0.3μs     1.16  period.PeriodUnaryMethods.time_asfreq('min')
+     17.2±0.01μs      19.9±0.02μs     1.15  index_object.StringIndex.time_slice_indexer_basic
+     3.25±0.02μs      3.75±0.03μs     1.15  period.PeriodProperties.time_year('M')
+     3.09±0.01μs      3.55±0.01μs     1.15  period.PeriodProperties.time_hour('M')
+     3.19±0.02μs      3.65±0.01μs     1.14  period.PeriodProperties.time_dayofyear('M')
+         201±2ms        230±0.8ms     1.14  io_sql.WriteSQLTypes.time_datetime_sqlalchemy
+     3.03±0.02μs      3.45±0.01μs     1.14  period.PeriodProperties.time_dayofweek('min')
+          1.05ms           1.19ms     1.14  timeseries.DatetimeIndex.time_reset_index_tz
+     3.17±0.02μs      3.61±0.02μs     1.14  period.PeriodProperties.time_second('M')
+     3.19±0.02μs      3.63±0.01μs     1.14  period.PeriodProperties.time_year('min')
+        297±10μs         338±10μs     1.14  series_methods.series_constructor_no_data_datetime_index.time_series_constructor_no_data_datetime_index
+       316±0.5ms          359±2ms     1.14  groupby.groupby_indices.time_groupby_indices
+       221±0.3μs        251±0.6μs     1.13  period.PeriodProperties.time_end_time('min')
+     3.18±0.03μs      3.60±0.03μs     1.13  period.PeriodProperties.time_hour('min')
+           3.15s            3.56s     1.13  packers.SQL.time_write_sql
+     28.5±0.09μs      32.2±0.05μs     1.13  period.Indexing.time_shallow_copy
+       221±0.5μs          249±1μs     1.13  period.PeriodProperties.time_end_time('M')
+        1.42±0ms      1.60±0.01ms     1.13  categoricals.Repr.time_rendering
+     3.17±0.01μs      3.57±0.02μs     1.13  period.PeriodProperties.time_month('min')
+       207±0.3μs        233±0.7μs     1.13  period.PeriodUnaryMethods.time_to_timestamp('min')
+       207±0.5μs        233±0.4μs     1.12  period.PeriodProperties.time_start_time('min')
+       208±0.3μs        233±0.8μs     1.12  period.PeriodProperties.time_start_time('M')
+     3.37±0.02μs      3.78±0.02μs     1.12  period.PeriodProperties.time_daysinmonth('min')
+     3.19±0.02μs      3.57±0.02μs     1.12  period.PeriodProperties.time_week('min')
+     3.18±0.01μs      3.54±0.01μs     1.11  period.PeriodProperties.time_second('min')
+     3.19±0.02μs      3.56±0.01μs     1.11  period.PeriodProperties.time_day('M')
+     3.41±0.02μs      3.79±0.01μs     1.11  period.PeriodProperties.time_daysinmonth('M')
+     3.20±0.02μs      3.55±0.02μs     1.11  period.PeriodProperties.time_dayofyear('min')
+       129±0.7ms          142±2ms     1.11  gil.NoGilGroupby.time_max_2
+     3.15±0.01μs      3.47±0.01μs     1.10  period.PeriodProperties.time_quarter('min')
+       166±0.7μs        183±0.8μs     1.10  indexing.StringIndexing.time_getitem_pos_slice
+     3.27±0.02μs      3.60±0.01μs     1.10  period.PeriodProperties.time_qyear('M')
-     7.53±0.05ms      6.83±0.04ms     0.91  frame_methods.Interpolate.time_interpolate_some_good_infer
-     6.11±0.03ms      5.53±0.02ms     0.91  strings.StringMethods.time_slice
-        48.6±1ms         43.4±1ms     0.89  groupby.groupby_pivot_table.time_groupby_pivot_table
-     3.34±0.03ms      2.98±0.01ms     0.89  io_bench.read_parse_dates_iso8601.time_read_parse_dates_iso8601
-      12.5±0.1ms       11.0±0.1ms     0.88  strings.StringMethods.time_pad
-     6.87±0.03ms      5.94±0.01ms     0.87  timeseries.ResampleDataFrame.time_max_numpy
-           718ms        620±0.2ms     0.86  groupby.Groups.time_groupby_groups('object_small')
-     6.86±0.03ms      5.86±0.01ms     0.85  timeseries.ResampleDataFrame.time_max_string
-      28.1±0.2ms       23.8±0.2ms     0.85  groupby.groupby_agg_multi.time_groupby_multi_different_numpy_functions
-      51.9±0.3ms         43.9±1ms     0.85  frame_methods.frame_fancy_lookup.time_frame_fancy_lookup_all
-      29.8±0.2ms       25.0±0.1ms     0.84  reindex.Duplicates.time_frame_drop_dups
-     28.2±0.03ms      23.6±0.08ms     0.84  groupby.groupby_agg_multi.time_groupby_multi_different_functions
-      65.5±0.2μs       54.6±0.1μs     0.83  offset.YearBegin.time_timeseries_year_incr
-        1.36±0ms         1.12±0ms     0.82  indexing.DataFrameIndexing.time_boolean_rows_object
-      88.3±0.3ms       72.2±0.3ms     0.82  groupby.groupby_period.time_groupby_sum
-      7.32±0.3ms      5.90±0.02ms     0.81  timeseries.ResampleDataFrame.time_min_string
-      53.1±0.2μs       42.5±0.2μs     0.80  offset.YearBegin.time_timeseries_year_apply
-      7.39±0.1ms      5.88±0.01ms     0.80  timeseries.ResampleDataFrame.time_min_numpy
-     2.88±0.04ms      2.26±0.03ms     0.79  groupby.GroupBySuite.time_sem('int', 100)
-      42.3±0.2ms       33.0±0.4ms     0.78  binary_ops.Timeseries.time_timestamp_ops_diff(None)
-      59.7±0.1ms       44.6±0.2ms     0.75  packers.MsgPack.time_write_msgpack
-      44.5±0.5ms       33.0±0.2ms     0.74  categoricals.Constructor.time_regular
-       206±0.8μs        150±0.2μs     0.73  indexing.Int64Indexing.time_ix_slice
-       166±0.3μs        111±0.4μs     0.67  indexing.Int64Indexing.time_ix_scalar
-     58.4±0.08μs      38.6±0.02μs     0.66  timestamp.TimestampProperties.time_is_month_end(<DstTzInfo 'Europe/Amsterdam' LMT+0:20:00 STD>)
-     58.5±0.03μs       38.4±0.3μs     0.66  timestamp.TimestampProperties.time_is_year_end(<DstTzInfo 'Europe/Amsterdam' LMT+0:20:00 STD>)
-      58.2±0.2μs      38.1±0.03μs     0.65  timestamp.TimestampProperties.time_is_leap_year(<DstTzInfo 'Europe/Amsterdam' LMT+0:20:00 STD>)
-      58.5±0.1μs      38.1±0.08μs     0.65  timestamp.TimestampProperties.time_is_year_start(<DstTzInfo 'Europe/Amsterdam' LMT+0:20:00 STD>)
-     54.8±0.05μs      35.7±0.05μs     0.65  timestamp.TimestampProperties.time_week(<DstTzInfo 'Europe/Amsterdam' LMT+0:20:00 STD>)
-     54.1±0.05μs      35.2±0.07μs     0.65  timestamp.TimestampProperties.time_dayofyear(<DstTzInfo 'Europe/Amsterdam' LMT+0:20:00 STD>)
-     54.1±0.06μs      35.1±0.06μs     0.65  timestamp.TimestampProperties.time_days_in_month(<DstTzInfo 'Europe/Amsterdam' LMT+0:20:00 STD>)
-      58.4±0.1μs       37.9±0.1μs     0.65  timestamp.TimestampProperties.time_is_quarter_end(<DstTzInfo 'Europe/Amsterdam' LMT+0:20:00 STD>)
-      59.1±0.2μs      38.3±0.07μs     0.65  timestamp.TimestampProperties.time_is_quarter_start(<DstTzInfo 'Europe/Amsterdam' LMT+0:20:00 STD>)
-     58.5±0.07μs      37.8±0.05μs     0.65  timestamp.TimestampProperties.time_is_month_start(<DstTzInfo 'Europe/Amsterdam' LMT+0:20:00 STD>)
-      55.0±0.1μs      35.2±0.03μs     0.64  timestamp.TimestampProperties.time_quarter(<DstTzInfo 'Europe/Amsterdam' LMT+0:20:00 STD>)
-     14.8±0.03ms      8.06±0.04ms     0.54  period.Algorithms.time_value_counts('series')
-     12.5±0.04ms      6.47±0.01ms     0.52  period.Algorithms.time_drop_duplicates('series')
-      69.0±0.2μs      19.6±0.06μs     0.28  indexing.DataFrameIndexing.time_get_value_ix
-      46.3±0.5μs          924±5ns     0.02  indexing.IndexerLookup.time_lookup_ix

@jreback
Copy link
Contributor

jreback commented Nov 27, 2017

can u do the reverse of this; so regressions are > 1 (and current master)

and open a new issue - i think a couple of regressions here

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Benchmark Performance (ASV) benchmarks
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants