Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BUG: groupby.transform retains timezone information #25264

Merged
merged 12 commits into from
Feb 16, 2019
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v0.24.2.rst
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ Bug Fixes

**Reshaping**

-
- Bug in :meth:`pandas.core.groupby.GroupBy.transform` where applying a function to a timezone aware column would return a timezone naive result (:issue:`24198`)
- Bug in :func:`DataFrame.join` when joining on a timezone aware :class:`DatetimeIndex` (:issue:`23931`)
-

Expand Down
2 changes: 1 addition & 1 deletion pandas/core/groupby/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -964,7 +964,7 @@ def _transform_fast(self, func, func_nm):

ids, _, ngroup = self.grouper.group_info
cast = self._transform_should_cast(func_nm)
out = algorithms.take_1d(func().values, ids)
out = algorithms.take_1d(func()._values, ids)
if cast:
out = self._try_cast(out, self.obj)
return Series(out, index=self.obj.index, name=self.obj.name)
Expand Down
11 changes: 11 additions & 0 deletions pandas/tests/groupby/test_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -834,3 +834,14 @@ def demean_rename(x):
tm.assert_frame_equal(result, expected)
result_single = df.groupby('group').value.transform(demean_rename)
tm.assert_series_equal(result_single, expected['value'])


@pytest.mark.parametrize('func', [min, max, np.min, np.max, 'first', 'last'])
def test_groupby_transform_timezone_column(func):
# GH 24198
ts = pd.to_datetime('now', utc=True).tz_convert('Asia/Singapore')
result = pd.DataFrame({'end_time': [ts], 'id': [1]})
result['max_end_time'] = result.groupby('id').end_time.transform(func)
expected = pd.DataFrame([[ts, 1, ts]], columns=['end_time', 'id',
'max_end_time'])
tm.assert_frame_equal(result, expected)