Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BUG: fixed merging with empty frame containing an Int64 column (#25183) #25289

Merged
merged 8 commits into from
Feb 24, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v0.24.2.rst
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ Bug Fixes
**Other**

- Bug in :meth:`Series.is_unique` where single occurrences of ``NaN`` were not considered unique (:issue:`25180`)
-
- Bug in :func:`merge` when merging an empty ``DataFrame`` with an ``Int64`` column or a non-empty ``DataFrame`` with an ``Int64`` column that is all ``NaN`` (:issue:`25183`)
-

.. _whatsnew_0.242.contributors:
Expand Down
2 changes: 2 additions & 0 deletions pandas/core/internals/concat.py
Original file line number Diff line number Diff line change
Expand Up @@ -190,6 +190,8 @@ def get_reindexed_values(self, empty_dtype, upcasted_na):
pass
elif getattr(self.block, 'is_sparse', False):
pass
elif getattr(self.block, 'is_extension', False):
pass
else:
missing_arr = np.empty(self.shape, dtype=empty_dtype)
missing_arr.fill(fill_value)
Expand Down
78 changes: 78 additions & 0 deletions pandas/tests/reshape/merge/test_merge.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,54 @@ def get_test_data(ngroups=NGROUPS, n=N):
return arr


def get_series():
return [
pd.Series([1], dtype='int64'),
pd.Series([1], dtype='Int64'),
pd.Series([1.23]),
pd.Series(['foo']),
pd.Series([True]),
pd.Series([pd.Timestamp('2018-01-01')]),
pd.Series([pd.Timestamp('2018-01-01', tz='US/Eastern')]),
]


def get_series_na():
return [
pd.Series([np.nan], dtype='Int64'),
pd.Series([np.nan], dtype='float'),
pd.Series([np.nan], dtype='object'),
pd.Series([pd.NaT]),
]


@pytest.fixture(params=get_series(), ids=lambda x: x.dtype.name)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you add a 1-line comment to each of these, and make the names a bit more verbose; its easy to see this in the diff, but when looking at the raw column these names are hard to grok.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Are you talking about column names a and b or fixture names value_col and value_col2?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

the fixture names

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

def series_of_dtype(request):
"""
A parametrized fixture returning a variety of Series of different
dtypes
"""
return request.param


@pytest.fixture(params=get_series(), ids=lambda x: x.dtype.name)
def series_of_dtype2(request):
"""
A duplicate of the series_of_dtype fixture, so that it can be used
twice by a single function
"""
return request.param


@pytest.fixture(params=get_series_na(), ids=lambda x: x.dtype.name)
def series_of_dtype_all_na(request):
"""
A parametrized fixture returning a variety of Series with all NA
values
"""
return request.param


class TestMerge(object):

def setup_method(self, method):
Expand Down Expand Up @@ -428,6 +476,36 @@ def check2(exp, kwarg):
check1(exp_in, kwarg)
check2(exp_out, kwarg)

def test_merge_empty_frame(self, series_of_dtype, series_of_dtype2):
# GH 25183
df = pd.DataFrame({'key': series_of_dtype, 'value': series_of_dtype2},
columns=['key', 'value'])
df_empty = df[:0]
expected = pd.DataFrame({
'value_x': pd.Series(dtype=df.dtypes['value']),
'key': pd.Series(dtype=df.dtypes['key']),
'value_y': pd.Series(dtype=df.dtypes['value']),
}, columns=['value_x', 'key', 'value_y'])
actual = df_empty.merge(df, on='key')
assert_frame_equal(actual, expected)

def test_merge_all_na_column(self, series_of_dtype,
series_of_dtype_all_na):
# GH 25183
df_left = pd.DataFrame(
{'key': series_of_dtype, 'value': series_of_dtype_all_na},
columns=['key', 'value'])
df_right = pd.DataFrame(
{'key': series_of_dtype, 'value': series_of_dtype_all_na},
columns=['key', 'value'])
expected = pd.DataFrame({
'key': series_of_dtype,
'value_x': series_of_dtype_all_na,
'value_y': series_of_dtype_all_na,
}, columns=['key', 'value_x', 'value_y'])
actual = df_left.merge(df_right, on='key')
assert_frame_equal(actual, expected)

def test_merge_nosort(self):
# #2098, anything to do?

Expand Down