Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Deprecate SparseDataFrame and SparseSeries #26137

Merged
merged 29 commits into from
May 29, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
29 commits
Select commit Hold shift + click to select a range
d518404
Squashed commit of the following:
TomAugspurger Mar 15, 2019
c32e5ff
DEPR: Deprecate SparseSeries and SparseDataFrame
TomAugspurger Mar 12, 2019
836d19b
Merge remote-tracking branch 'upstream/master' into depr-sparse-depr
TomAugspurger May 14, 2019
c0d6cf2
fixup
TomAugspurger May 14, 2019
8f06d88
fixup
TomAugspurger May 14, 2019
380c7c0
fixup
TomAugspurger May 14, 2019
21569e2
fixup
TomAugspurger May 14, 2019
6a81837
docs
TomAugspurger May 14, 2019
12a8329
remove change
TomAugspurger May 14, 2019
01c7710
fixed merge conflict
TomAugspurger May 14, 2019
e9b9b29
pickle
TomAugspurger May 14, 2019
b295ce1
fixups
TomAugspurger May 15, 2019
ccf71db
fixups
TomAugspurger May 15, 2019
7e6fbd6
doc lint
TomAugspurger May 15, 2019
865f1aa
fix pytables
TomAugspurger May 15, 2019
9915c48
temp set error
TomAugspurger May 15, 2019
30f3670
skip doctests
TomAugspurger May 15, 2019
b043243
Merge remote-tracking branch 'upstream/master' into depr-sparse-depr
TomAugspurger May 15, 2019
b2aef95
Merge remote-tracking branch 'upstream/master' into depr-sparse-depr
TomAugspurger May 16, 2019
706c5dc
fixups
TomAugspurger May 16, 2019
13d30d2
fixup
TomAugspurger May 16, 2019
c5fa3fb
updates
TomAugspurger May 16, 2019
101c425
Merge remote-tracking branch 'upstream/master' into depr-sparse-depr
TomAugspurger May 20, 2019
b76745f
fixups
TomAugspurger May 20, 2019
f153400
return
TomAugspurger May 20, 2019
0c49ddc
Merge remote-tracking branch 'upstream/master' into depr-sparse-depr
TomAugspurger May 21, 2019
1903f67
fixups
TomAugspurger May 28, 2019
0b03ac2
Merge remote-tracking branch 'upstream/master' into depr-sparse-depr
TomAugspurger May 28, 2019
12d8d83
Merge remote-tracking branch 'upstream/master' into depr-sparse-depr
TomAugspurger May 28, 2019
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
326 changes: 204 additions & 122 deletions doc/source/user_guide/sparse.rst

Large diffs are not rendered by default.

27 changes: 26 additions & 1 deletion doc/source/whatsnew/v0.25.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -299,14 +299,39 @@ Other API Changes
Deprecations
~~~~~~~~~~~~

Sparse Subclasses
^^^^^^^^^^^^^^^^^

The ``SparseSeries`` and ``SparseDataFrame`` subclasses are deprecated. Their functionality is better-provided
by a ``Series`` or ``DataFrame`` with sparse values.

**Previous Way**

.. ipython:: python
:okwarning:

df = pd.SparseDataFrame({"A": [0, 0, 1, 2]})
df.dtypes

**New Way**

.. ipython:: python

df = pd.DataFrame({"A": pd.SparseArray([0, 0, 1, 2])})
df.dtypes

The memory usage of the two approaches is identical. See :ref:`sparse.migration` for more (:issue:`19239`).

Other Deprecations
^^^^^^^^^^^^^^^^^^

- The deprecated ``.ix[]`` indexer now raises a more visible FutureWarning instead of DeprecationWarning (:issue:`26438`).
- Deprecated the ``units=M`` (months) and ``units=Y`` (year) parameters for ``units`` of :func:`pandas.to_timedelta`, :func:`pandas.Timedelta` and :func:`pandas.TimedeltaIndex` (:issue:`16344`)
- The :attr:`SparseArray.values` attribute is deprecated. You can use ``np.asarray(...)`` or
the :meth:`SparseArray.to_dense` method instead (:issue:`26421`).
- The functions :func:`pandas.to_datetime` and :func:`pandas.to_timedelta` have deprecated the ``box`` keyword. Instead, use :meth:`to_numpy` or :meth:`Timestamp.to_datetime64` or :meth:`Timedelta.to_timedelta64`. (:issue:`24416`)
- The :meth:`DataFrame.compound` and :meth:`Series.compound` methods are deprecated and will be removed in a future version (:issue:`26405`).


.. _whatsnew_0250.prior_deprecations:

Removal of prior version deprecations/changes
Expand Down
6 changes: 3 additions & 3 deletions pandas/core/arrays/sparse.py
Original file line number Diff line number Diff line change
Expand Up @@ -2014,9 +2014,9 @@ def from_coo(cls, A, dense_index=False):
from pandas.core.sparse.scipy_sparse import _coo_to_sparse_series
from pandas import Series

result = _coo_to_sparse_series(A, dense_index=dense_index)
# SparseSeries -> Series[sparse]
result = Series(result.values, index=result.index, copy=False)
result = _coo_to_sparse_series(A, dense_index=dense_index,
sparse_series=False)
result = Series(result.array, index=result.index, copy=False)

return result

Expand Down
6 changes: 3 additions & 3 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -1930,13 +1930,13 @@ def to_sparse(self, fill_value=None, kind='block'):
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

>>> sdf = df.to_sparse()
>>> sdf
>>> sdf = df.to_sparse() # doctest: +SKIP
>>> sdf # doctest: +SKIP
0 1
0 NaN NaN
1 1.0 NaN
2 NaN 1.0
>>> type(sdf)
>>> type(sdf) # doctest: +SKIP
<class 'pandas.core.sparse.frame.SparseDataFrame'>
"""
from pandas.core.sparse.api import SparseDataFrame
Expand Down
2 changes: 1 addition & 1 deletion pandas/core/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -5589,7 +5589,7 @@ def ftypes(self):
3 float64:dense
dtype: object

>>> pd.SparseDataFrame(arr).ftypes
>>> pd.SparseDataFrame(arr).ftypes # doctest: +SKIP
jreback marked this conversation as resolved.
Show resolved Hide resolved
0 float64:sparse
1 float64:sparse
2 float64:sparse
Expand Down
1 change: 0 additions & 1 deletion pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -1586,7 +1586,6 @@ def to_sparse(self, kind='block', fill_value=None):
SparseSeries
Sparse representation of the Series.
"""
# TODO: deprecate
from pandas.core.sparse.series import SparseSeries

values = SparseArray(self, kind=kind, fill_value=fill_value)
Expand Down
12 changes: 12 additions & 0 deletions pandas/core/sparse/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,13 +28,24 @@
from pandas.core.sparse.series import SparseSeries

_shared_doc_kwargs = dict(klass='SparseDataFrame')
depr_msg = """\
SparseDataFrame is deprecated and will be removed in a future version.
Use a regular DataFrame whose columns are SparseArrays instead.

See http://pandas.pydata.org/pandas-docs/stable/\
user_guide/sparse.html#migrating for more.
"""


class SparseDataFrame(DataFrame):
"""
DataFrame containing sparse floating point data in the form of SparseSeries
objects

.. deprectaed:: 0.25.0
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

same here


Use a DataFrame with sparse values instead.

Parameters
----------
data : same types as can be passed to DataFrame or scipy.sparse.spmatrix
Expand All @@ -56,6 +67,7 @@ class SparseDataFrame(DataFrame):
def __init__(self, data=None, index=None, columns=None, default_kind=None,
default_fill_value=None, dtype=None, copy=False):

warnings.warn(depr_msg, FutureWarning, stacklevel=2)
# pick up the defaults from the Sparse structures
if isinstance(data, SparseDataFrame):
if index is None:
Expand Down
24 changes: 21 additions & 3 deletions pandas/core/sparse/scipy_sparse.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,14 +116,32 @@ def _sparse_series_to_coo(ss, row_levels=(0, ), column_levels=(1, ),
return sparse_matrix, rows, columns


def _coo_to_sparse_series(A, dense_index=False):
def _coo_to_sparse_series(A, dense_index: bool = False,
sparse_series: bool = True):
"""
Convert a scipy.sparse.coo_matrix to a SparseSeries.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you add a doc-string here (types too if you can!)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done. I'm not really sure on two things

  1. The type for A is 'scipy.sparse.coo.coo_matrix', but we can't import sparse.
  2. The return type is Union[Series, SparseSeries] but importing SparseSeries would cause a circular import

so I left types off for those.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

  1. can't you just use the string? (I think that works)
  2. same use the string

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you? Are these types actually checked in our CI? I'd rather not introduce invalid types.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yes they should be

Use the defaults given in the SparseSeries constructor.

Parameters
----------
A : scipy.sparse.coo.coo_matrix
dense_index : bool, default False
sparse_series : bool, default True

Returns
-------
Series or SparseSeries
"""
from pandas import SparseDtype

s = Series(A.data, MultiIndex.from_arrays((A.row, A.col)))
s = s.sort_index()
s = s.to_sparse() # TODO: specify kind?
if sparse_series:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

why exactly do you need sparse_series flag? why can't we just do the astype after calling this routine?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is called from both Series.sparse and SparseSeries.

Previously, this went coo_matrix -> SparseSeries -> Series[sparse], which caused an undesired warning for Series.sparse.from_coo(). Once SparseSeries is gone we can remove the keyword.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ok can you add a todo about this then, this is not obvious at all

# TODO(SparseSeries): remove this and the sparse_series keyword.
# This is just here to avoid a DeprecationWarning when
# _coo_to_sparse_series is called via Series.sparse.from_coo
s = s.to_sparse() # TODO: specify kind?
else:
s = s.astype(SparseDtype(s.dtype))
if dense_index:
# is there a better constructor method to use here?
i = range(A.shape[0])
Expand Down
16 changes: 16 additions & 0 deletions pandas/core/sparse/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,9 +32,24 @@
optional_labels='', optional_axis='')


depr_msg = """\
SparseSeries is deprecated and will be removed in a future version.
Use a Series with sparse values instead.

>>> series = pd.Series(pd.SparseArray(...))

See http://pandas.pydata.org/pandas-docs/stable/\
user_guide/sparse.html#migrating for more.
"""
jorisvandenbossche marked this conversation as resolved.
Show resolved Hide resolved


class SparseSeries(Series):
"""Data structure for labeled, sparse floating point data

.. deprectaed:: 0.25.0
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

typo


Use a Series with sparse values instead.

Parameters
----------
data : {array-like, Series, SparseSeries, dict}
Expand All @@ -60,6 +75,7 @@ class SparseSeries(Series):
def __init__(self, data=None, index=None, sparse_index=None, kind='block',
fill_value=None, name=None, dtype=None, copy=False,
fastpath=False):
warnings.warn(depr_msg, FutureWarning, stacklevel=2)
# TODO: Most of this should be refactored and shared with Series
# 1. BlockManager -> array
# 2. Series.index, Series.name, index, name reconciliation
Expand Down
18 changes: 18 additions & 0 deletions pandas/tests/arrays/sparse/test_accessor.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,3 +101,21 @@ def test_density(self):
res = df.sparse.density
expected = 0.75
assert res == expected

@pytest.mark.parametrize("dtype", ['int64', 'float64'])
@pytest.mark.parametrize("dense_index", [True, False])
@td.skip_if_no_scipy
def test_series_from_coo(self, dtype, dense_index):
import scipy.sparse

A = scipy.sparse.eye(3, format='coo', dtype=dtype)
result = pd.Series.sparse.from_coo(A, dense_index=dense_index)
index = pd.MultiIndex.from_tuples([(0, 0), (1, 1), (2, 2)])
expected = pd.Series(pd.SparseArray(np.array([1, 1, 1], dtype=dtype)),
index=index)
if dense_index:
expected = expected.reindex(
pd.MultiIndex.from_product(index.levels)
)

tm.assert_series_equal(result, expected)
1 change: 1 addition & 0 deletions pandas/tests/arrays/sparse/test_arithmetics.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
import pandas.util.testing as tm


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
class TestSparseArrayArithmetics:

_base = np.array
Expand Down
3 changes: 3 additions & 0 deletions pandas/tests/arrays/sparse/test_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -215,6 +215,7 @@ def test_scalar_with_index_infer_dtype(self, scalar, dtype):
assert exp.dtype == dtype

@pytest.mark.parametrize("fill", [1, np.nan, 0])
@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think you don't need these as a prior PR added this to setup.cfg

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The setup.cfg has an error::: config to elevate unhandled warnings to errors. We still need these otherwise the tests would fail.

We have a single test asserting that SparseSeries.__init__ warns, and explicitly ignore the warnings elsewhere.

def test_sparse_series_round_trip(self, kind, fill):
# see gh-13999
arr = SparseArray([np.nan, 1, np.nan, 2, 3],
Expand All @@ -231,6 +232,7 @@ def test_sparse_series_round_trip(self, kind, fill):
tm.assert_sp_array_equal(arr, res)

@pytest.mark.parametrize("fill", [True, False, np.nan])
@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
def test_sparse_series_round_trip2(self, kind, fill):
# see gh-13999
arr = SparseArray([True, False, True, True], dtype=np.bool,
Expand Down Expand Up @@ -1098,6 +1100,7 @@ def test_npoints(self):
assert arr.npoints == 1


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
class TestAccessor:

@pytest.mark.parametrize('attr', [
Expand Down
28 changes: 24 additions & 4 deletions pandas/tests/dtypes/test_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,10 @@
from pandas.core.sparse.api import SparseDtype
import pandas.util.testing as tm

ignore_sparse_warning = pytest.mark.filterwarnings(
"ignore:Sparse:FutureWarning"
)


# EA & Actual Dtypes
def to_ea_dtypes(dtypes):
Expand Down Expand Up @@ -146,6 +150,7 @@ def test_is_object():
@pytest.mark.parametrize("check_scipy", [
False, pytest.param(True, marks=td.skip_if_no_scipy)
])
@ignore_sparse_warning
def test_is_sparse(check_scipy):
assert com.is_sparse(pd.SparseArray([1, 2, 3]))
assert com.is_sparse(pd.SparseSeries([1, 2, 3]))
Expand All @@ -158,6 +163,7 @@ def test_is_sparse(check_scipy):


@td.skip_if_no_scipy
@ignore_sparse_warning
def test_is_scipy_sparse():
from scipy.sparse import bsr_matrix
assert com.is_scipy_sparse(bsr_matrix([1, 2, 3]))
Expand Down Expand Up @@ -529,6 +535,7 @@ def test_is_bool_dtype():
@pytest.mark.parametrize("check_scipy", [
False, pytest.param(True, marks=td.skip_if_no_scipy)
])
@ignore_sparse_warning
def test_is_extension_type(check_scipy):
assert not com.is_extension_type([1, 2, 3])
assert not com.is_extension_type(np.array([1, 2, 3]))
Expand Down Expand Up @@ -595,8 +602,6 @@ def test_is_offsetlike():
(pd.DatetimeIndex([1, 2]).dtype, np.dtype('=M8[ns]')),
('<M8[ns]', np.dtype('<M8[ns]')),
('datetime64[ns, Europe/London]', DatetimeTZDtype('ns', 'Europe/London')),
(pd.SparseSeries([1, 2], dtype='int32'), SparseDtype('int32')),
(pd.SparseSeries([1, 2], dtype='int32').dtype, SparseDtype('int32')),
(PeriodDtype(freq='D'), PeriodDtype(freq='D')),
('period[D]', PeriodDtype(freq='D')),
(IntervalDtype(), IntervalDtype()),
Expand All @@ -605,6 +610,14 @@ def test__get_dtype(input_param, result):
assert com._get_dtype(input_param) == result


@ignore_sparse_warning
def test__get_dtype_sparse():
ser = pd.SparseSeries([1, 2], dtype='int32')
expected = SparseDtype('int32')
assert com._get_dtype(ser) == expected
assert com._get_dtype(ser.dtype) == expected


@pytest.mark.parametrize('input_param,expected_error_message', [
(None, "Cannot deduce dtype from null object"),
(1, "data type not understood"),
Expand Down Expand Up @@ -640,8 +653,7 @@ def test__get_dtype_fails(input_param, expected_error_message):
(pd.DatetimeIndex(['2000'], tz='Europe/London').dtype,
pd.Timestamp),
('datetime64[ns, Europe/London]', pd.Timestamp),
(pd.SparseSeries([1, 2], dtype='int32'), np.int32),
(pd.SparseSeries([1, 2], dtype='int32').dtype, np.int32),

(PeriodDtype(freq='D'), pd.Period),
('period[D]', pd.Period),
(IntervalDtype(), pd.Interval),
Expand All @@ -652,3 +664,11 @@ def test__get_dtype_fails(input_param, expected_error_message):
])
def test__is_dtype_type(input_param, result):
assert com._is_dtype_type(input_param, lambda tipo: tipo == result)


@ignore_sparse_warning
def test__is_dtype_type_sparse():
ser = pd.SparseSeries([1, 2], dtype='int32')
result = np.dtype('int32')
assert com._is_dtype_type(ser, lambda tipo: tipo == result)
assert com._is_dtype_type(ser.dtype, lambda tipo: tipo == result)
7 changes: 6 additions & 1 deletion pandas/tests/dtypes/test_dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -870,7 +870,6 @@ def test_registry_find(dtype, expected):
(pd.Series([1, 2]), False),
(np.array([True, False]), True),
(pd.Series([True, False]), True),
(pd.SparseSeries([True, False]), True),
(pd.SparseArray([True, False]), True),
(SparseDtype(bool), True)
])
Expand All @@ -879,6 +878,12 @@ def test_is_bool_dtype(dtype, expected):
assert result is expected


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
def test_is_bool_dtype_sparse():
result = is_bool_dtype(pd.SparseSeries([True, False]))
assert result is True


@pytest.mark.parametrize("check", [
is_categorical_dtype,
is_datetime64tz_dtype,
Expand Down
9 changes: 6 additions & 3 deletions pandas/tests/dtypes/test_generic.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from warnings import catch_warnings
from warnings import catch_warnings, simplefilter

import numpy as np

Expand All @@ -17,9 +17,12 @@ class TestABCClasses:
categorical = pd.Categorical([1, 2, 3], categories=[2, 3, 1])
categorical_df = pd.DataFrame({"values": [1, 2, 3]}, index=categorical)
df = pd.DataFrame({'names': ['a', 'b', 'c']}, index=multi_index)
sparse_series = pd.Series([1, 2, 3]).to_sparse()
with catch_warnings():
simplefilter('ignore', FutureWarning)
sparse_series = pd.Series([1, 2, 3]).to_sparse()
sparse_frame = pd.SparseDataFrame({'a': [1, -1, None]})

sparse_array = pd.SparseArray(np.random.randn(10))
sparse_frame = pd.SparseDataFrame({'a': [1, -1, None]})
datetime_array = pd.core.arrays.DatetimeArray(datetime_index)
timedelta_array = pd.core.arrays.TimedeltaArray(timedelta_index)

Expand Down
2 changes: 2 additions & 0 deletions pandas/tests/frame/test_alter_axes.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
import pandas.util.testing as tm


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
class TestDataFrameAlterAxes:

def test_set_index_directly(self, float_string_frame):
Expand Down Expand Up @@ -1376,6 +1377,7 @@ def test_droplevel(self):
tm.assert_frame_equal(result, expected)


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
class TestIntervalIndex:

def test_setitem(self):
Expand Down
1 change: 1 addition & 0 deletions pandas/tests/frame/test_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -2073,6 +2073,7 @@ def test_loc_duplicates(self):
df.loc[trange[bool_idx], "A"] += 6
tm.assert_frame_equal(df, expected)

@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
def test_iloc_sparse_propegate_fill_value(self):
from pandas.core.sparse.api import SparseDataFrame
df = SparseDataFrame({'A': [999, 1]}, default_fill_value=999)
Expand Down
Loading