Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BUG: mode not sorting values for arrow backed strings #55621

Merged
merged 9 commits into from
Oct 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.1.2.rst
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ Bug fixes
- Fixed bug in :meth:`Index.insert` raising when inserting ``None`` into :class:`Index` with ``dtype="string[pyarrow_numpy]"`` (:issue:`55365`)
- Fixed bug in :meth:`Series.all` and :meth:`Series.any` not treating missing values correctly for ``dtype="string[pyarrow_numpy]"`` (:issue:`55367`)
- Fixed bug in :meth:`Series.floordiv` for :class:`ArrowDtype` (:issue:`55561`)
- Fixed bug in :meth:`Series.mode` not sorting values for arrow backed string dtype (:issue:`55621`)
- Fixed bug in :meth:`Series.rank` for ``string[pyarrow_numpy]`` dtype (:issue:`55362`)
- Fixed bug in :meth:`Series.str.extractall` for :class:`ArrowDtype` dtype being converted to object (:issue:`53846`)
- Fixed bug where PDEP-6 warning about setting an item of an incompatible dtype was being shown when creating a new conditional column (:issue:`55025`)
Expand Down
1 change: 1 addition & 0 deletions pandas/core/arrays/arrow/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -1919,6 +1919,7 @@ def _mode(self, dropna: bool = True) -> Self:
if pa.types.is_temporal(pa_type):
most_common = most_common.cast(pa_type)

most_common = most_common.take(pc.array_sort_indices(most_common))
return type(self)(most_common)

def _maybe_convert_setitem_value(self, value):
Expand Down
4 changes: 2 additions & 2 deletions pandas/tests/extension/test_arrow.py
Original file line number Diff line number Diff line change
Expand Up @@ -1333,7 +1333,7 @@ def test_quantile(data, interpolation, quantile, request):

@pytest.mark.parametrize(
"take_idx, exp_idx",
[[[0, 0, 2, 2, 4, 4], [0, 4]], [[0, 0, 0, 2, 4, 4], [0]]],
[[[0, 0, 2, 2, 4, 4], [4, 0]], [[0, 0, 0, 2, 4, 4], [0]]],
ids=["multi_mode", "single_mode"],
)
def test_mode_dropna_true(data_for_grouping, take_idx, exp_idx):
Expand All @@ -1351,7 +1351,7 @@ def test_mode_dropna_false_mode_na(data):
expected = pd.Series([None], dtype=data.dtype)
tm.assert_series_equal(result, expected)

expected = pd.Series([None, data[0]], dtype=data.dtype)
expected = pd.Series([data[0], None], dtype=data.dtype)
result = expected.mode(dropna=False)
tm.assert_series_equal(result, expected)

Expand Down
14 changes: 11 additions & 3 deletions pandas/tests/groupby/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
PerformanceWarning,
SpecificationError,
)
import pandas.util._test_decorators as td

import pandas as pd
from pandas import (
Expand Down Expand Up @@ -2541,7 +2542,7 @@ def test_groupby_column_index_name_lost(func):
"infer_string",
[
False,
True,
pytest.param(True, marks=td.skip_if_no("pyarrow")),
],
)
def test_groupby_duplicate_columns(infer_string):
Expand Down Expand Up @@ -2773,13 +2774,20 @@ def test_rolling_wrong_param_min_period():
test_df.groupby("name")["val"].rolling(window=2, min_period=1).sum()


def test_by_column_values_with_same_starting_value():
@pytest.mark.parametrize(
"dtype",
[
object,
pytest.param("string[pyarrow_numpy]", marks=td.skip_if_no("pyarrow")),
],
)
def test_by_column_values_with_same_starting_value(dtype):
# GH29635
df = DataFrame(
{
"Name": ["Thomas", "Thomas", "Thomas John"],
"Credit": [1200, 1300, 900],
"Mood": ["sad", "happy", "happy"],
"Mood": Series(["sad", "happy", "happy"], dtype=dtype),
}
)
aggregate_details = {"Mood": Series.mode, "Credit": "sum"}
Expand Down
Loading